
Infor Mongoose Core Development
Guide

Release 10.x

Copyright © 2019 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor Cloudsuite Business (Industrial) 10.x
Publication Date: January 16, 2019
Document code: csbi_10.x_mgsdug_op_csind_en-us

Contents

Contacting Infor..8

Chapter 1: Application Messages...9

About Application Message Construction..9

Constructing Application Messages..9

Setting Application Message Numbers...10

Invoking and Concatenating Multiple Application Messages...11

About Constraint Exception Messages...12

Building Constraint Exception Messages..12

Chapter 2: IDOs...14

Understanding IDOs..14

Extend and Replace IDOs...15

Working with IDO Projects..16

Adding an IDO Project...16

Deleting IDO Projects..16

Working with IDOs...17

The Basics...17

Working with Tables...32

Working with Methods..35

Working with Properties...38

Chapter 3: Form Control..43

Understanding Form Control...43

Form Control Tasks...45

Checking Out Objects..45

Displaying and Maintaining Checked-Out Objects...46

Checking In Objects...47

Getting Objects..47

Infor Mongoose Core Development Guide | 3

Contents

Unlocking Objects..48

Archiving Objects...48

Restoring Objects..49

Chapter 4: Application Events...50

About the Application Event System...50

Basic Components of the Application Event System...50

Advantages of the Application Event System..52

Example: Using the Application Event System..52

Using the Application Event System for Document (File) Attachments.......................................53

Working with Application Event System..54

Handling Application Events..54

Controlling the Sequence of Event Handlers and Actions...55

Restricting Which Handlers Run..55

About Synchronicity...56

About Suspension..58

About Adjournment and Resumption...60

About Event Handler Status...61

About Transactions..63

About the Framework Event Service..67

About Event Handler Revisions...68

Designing and Using Application Events and Handlers..69

About the Access As Identifier...70

About Application Events...70

About Event Triggers..72

About Event Handlers..74

About Event Actions...75

About Event Action Parameters...81

About Event Variables and Initial States..90

About Event Global Constants...91

About the Application Event System Design Forms...92

Setting up Custom Application Events and Handlers..93

Tracking Application Event System Status..99

About the Application Event System Messages..99

Responding to System-Generated Messages...100

Setting Variable Access...100

Infor Mongoose Core Development Guide | 4

Contents

Setting Translatable Captions for Variables..101

Moving Messages Between Folders..101

Sending Email to External Email Inbox for Prompts..101

About Prompts and Responses...102

About Voting Rules in Prompts..104

About Voting Status...108

Dealing with Indeterminate Voting Results..108

About Quorums..109

Chapter 5: Schema (SQL Table and Column) Editing...110

Maintaining Tables and Other SQL Schema Elements...110

Creating SQL Tables..110

Maintaining Columns on SQL Tables...111

Specifying Primary Keys and Other Constraints for a Table..111

Updating Existing SQL Tables...112

Editing SQL User-Defined Data Types...112

Executing SQL Statements..113

Restricted Tables...113

SQL Reserved Words..116

Chapter 6: User Extended Tables (UETs)...123

User Extended Tables Overview...123

Associating User Fields with a User Class..124

Extending Application Database Tables..124

Copying a User Field...125

Creating a Relationship Between a Database Table and a User Class...125

Creating a User Class...126

Creating User Fields..126

About User Defined Types...127

Defining an Index for a Class..127

Drawing UET Fields on Forms..127

Impacting the Schema...128

Chapter 7: Critical Numbers..129

About Critical Numbers...129

About Critical Number Goals and Alerts...130

Defining a Critical Number..131

Infor Mongoose Core Development Guide | 5

Contents

Setting Up Critical Number Parameters..133

Setting Up Multiple Results for One Critical Number..133

Stored Procedure Critical Number Examples..134

Changing Critical Number Display Settings..138

About Critical Number Snapshots...140

Generating a Critical Number Snapshot..141

Chapter 8: Critical Number Drilldowns...142

About Critical Number Drilldowns..142

Setting Up a Critical Number Drilldown...142

Setting Up a Stored Procedure Critical Number Drilldown..142

Setting Up an IDO Critical Number Drilldown..148

Setting Up a Critical Number/Drilldown IDO Filter...149

Setting Up an IDO-Based Sub Drilldown...150

Setting up a Sub-Drilldown Based on a Stored Procedure...150

Chapter 9: DataViews...156

About DataViews...156

Setting up a new DataView...158

Displaying a Predefined DataView..159

Creating Custom Columns for DataViews...159

Specifying Summaries for DataViews...160

Displaying DataView results..161

About DataView Layouts...163

Copying a DataView Layout..164

Setting Up Predefined DataViews...164

Specifying DataView setup information - General tab...165

Setting additional IDO specifications for a DataView..167

Specifying DataView setup information - Input Parameters tab..169

Specifying DataViews setup information - User Permissions tab..170

Specifying DataView setup information - Layouts tab...171

Specifying DataView setup information - Report Options tab...172

Copying a DataView to Create a New One...172

Setting Up a DataView Filter...173

Setting Up the Right-Click Actions Menu for DataViews...174

Setting Up a DataView Actions Filter..176

Infor Mongoose Core Development Guide | 6

Contents

Chapter 10: DataSearch...178

About DataSearch...178

Searching for Application Data with DataSearch...179

Configuring Data Sources for DataSearch..180

Setting Up a DataSearch Filter..182

About DataSearch Source Sets..183

Creating a DataSearch Source Set...183

About DataSearch Layouts..183

Chapter 11: App Builder/App Hub...185

About App Builder and the App Hub...185

App Builder permissions, groups, and roles..186

Launching App Builder and the App Hub..187

Chapter 12: Form Extensions..189

About extending and replacing forms..189

Using the Form Extensions form...189

Infor Mongoose Core Development Guide | 7

Contents

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and
create a support incident.

If we update this document after the product release, we will post the new version on the Infor Support
Portal. To access documentation, select Search > Browse Documentation. We recommend that you
check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor Mongoose Core Development Guide | 8

Contacting Infor

https://concierge.infor.com/
mailto:documentation@infor.com

Chapter 1: Application Messages

About Application Message Construction
Use application messages to display these types of information:

• Information or questions that require responses from the user
• Warnings about potential problems or conditions
• Error conditions within the application environment or operations
• System responses to user actions
Note: The types of application messages described here are generated through application database
code (stored procedures, triggers, etc.) and/or in the IDO layer (IDO extension class assemblies, etc.).
Messages that are generated at the client are not applicable here and do not reference or use the
messages that are contained in these Application tables.

Application messages are stored in the system and are invoked in response to user or system operations.
Messages can be constructed with both literal strings and variable values substituted and inserted into
the message when it is invoked.

Messages are identified and invoked with a unique message number that is assigned to the message
when it is constructed.

Constructing Application Messages
A message can be constructed so that values of various parameters can be picked up and used
dynamically when the message is invoked. This is done with the use of substitution parameters that
are evaluated when the message is invoked and run-time values substituted for the parameters.

These substitution parameters are indicated in a message by the use of an ampersand (&) followed
by a number or letter, for example &5 and &C.

These are possible sources of values for substitution parameters:

• Row captions
• Column or property captions
• Column or property values (literal or variable)
• Column or property value-captions (that is, the translatable caption that appears in the drop-down

list of one or more combo box components on a form)

Infor Mongoose Core Development Guide | 9

Application Messages

When you construct a message with substitution parameters, make sure the code that invokes the
message contains the correct number of values for the substitutions.

To invoke the message at run-time, insert an expression into your code at the point where you want
to call the message. This expression must use the MESSAGE parameter function.

For example, the message E=NoExistForIs5 has the value in English: "There exists no &1 where
&2 is &3 for &4 that has [&5: &6] and [&7: &8] and [&9: &A] and [&B: &C] and [&D: &E]."

This message requires these parameters:

• &1 Row caption
• &2 Column or property caption
• &3 Column or property value
• &4 Row caption
• &5 Column or property caption
• &6 Column or property value
• &7 Column or property caption
• &8 Column or property value
• &9 Column or property caption
• &A Column or property value
• &B Column or property caption
• &C Column or property value
• &D Column or property caption
• &E Column or property value

An example of a call for this message looks like this:

MESSAGE("E=NoExistforIs5", "@serial", "@serial.ser_num", V(SerNum)
 , "@item"
 , "@serial.whse", V(Whse)
 , "@serial.item", V(Item)
 , "@serial.loc", V(Loc)
 , "@serial.lot", V(Lot)
 , "@rsvd_inv.import_doc_id", V(ImportDocId)
)

At action execution time, this example might evaluate to this string:

There exists no Serial Number where S/N is S/N1234 for Item that has [Whse: MAIN] and [Item:
BK-27000-0007] and [Location: STOCK] and [Lot: LOT00012345] and [Import Doc Id: DocId000123456].

Setting Application Message Numbers
Typically, the unique message number consists of an alphanumeric prefix that identifies the application
or its owner, followed by an autonumbered suffix that is created and applied when the message is

Infor Mongoose Core Development Guide | 10

Application Messages

constructed. You are not required to follow this model, but it provides the best way to identify and locate
messages.

For example, your organization is called WonderWare, and you have an application called IssueTrack.
You can create and designate a message number prefix like "WW-IssTr-" to identify all messages used
in conjunction with this application. If you add an autonumbering suffix to this, you can then create
messages for your application without worrying about maintaining unique message numbers. Using
this process also allows you to locate all messages designed for use with this application.

To create this type of message numbering:

1 Use the Message Num Prefix field on the System Parameters form or General Parameters form
to specify the prefix. The system uses the prefix automatically when messages are created.

2 Use the Maintain Application Messages form to construct the message.

For more information see Constructing Application Messages on page 9.

The Message Num column on this form is defined as a TBD (To Be Determined) field, which means
that, when you create a message and save it, the system automatically uses the prefix and assigns
the next available number as the suffix.

3 Continuing our example, when you create your first application message, the system automatically
assigns the message number "WW-IssTr-1" to it. The next message is created as "WW-IssTr-2"
and so on.

Note: Predefined core messages assigned to and used by Mongoose have the prefix "MG_". Other
Mongoose-based applications might have and use other prefixes.

4 Save the message.

Invoking and Concatenating Multiple Application
Messages
You can construct calls to display multiple messages simultaneously. To do this, use multiple MESSAGE
expressions separated by pipe (|) symbols. The pipe symbol concatenates the messages.

For example, consider these MESSAGE expressions:

MESSAGE("E=NoExistforIs5", "@serial", "@serial.ser_num", V(SerNum)
 , "@item"
 , "@serial.whse", V(Whse)
 , "@serial.item", V(Item)
 , "@serial.loc", V(Loc)
 , "@serial.lot", V(Lot)
 , "@rsvd_inv.import_doc_id", V(ImportDocId)
)
 | MESSAGE("E=AppLockFail3")

At run time, this concatenation might evaluate to this message conversation:

Infor Mongoose Core Development Guide | 11

Application Messages

There exists no Serial Number where S/N is S/N1234 for Item that has [Whse: MAIN] and [Item:
BK-27000-0007] and [Location: STOCK] and [Lot: LOT00012345] and [Import Doc Id: DocId000123456].

About Constraint Exception Messages
Describe the process or concept here

When a SQL constraint exception is thrown from the application database, the IDO Request layer
catches the exception and can build a translatable message from the SQL constraint name and type,
if a message for that constraint name exists in the ObjectMainMessages table. Different constraints
can use the same basic message, which varies only by the different object names that are referenced
in the message text. For example, many constraint exceptions could be reported to a user with this
basic message:

The &1 entered already exists

where the &1 substitution expression could refer to any one of hundreds of different objects.

However, the text (or the object name that references the text) to be substituted cannot be passed
when the constraint exception occurs. The IDO Request layer can only pick up the constraint name
and type from the caught exception. The ObjectBuildMessages table contains child records that
reference either a Message Number defined on the Maintain Application Messages form or another
Object Name defined on the Maintain Application Message Objects form for the text to be used for
each substitution expression that exists in the referenced base.

Thus the same base message from the ApplicationMessage table can be used by many different
constraints, each of which defines a different set of references for the substitution text placeholders in
the message.

Building Constraint Exception Messages
The existing message number SL_100001 has the text "The &1 entered is not valid." You can reuse
this message number and text to construct a custom constraint error message.

1 Specify an Object Name for a SQL constraint, using the rules specified in the field description.

2 Select an existing Message Text, and the Message Number is displayed. For example, if you select
the Message Text "The &1 entered is not valid." the Message Number SL_100001 is displayed.

3 Specify a Message Description that describes how and when this instance of the message is used.
For example, "This message is displayed when <state> is updated on an Applicant Reference to a
value that does not exist in any state."

4 Specify the Message Type. For any given Object Name, you can only have one Message Type with
the same value. For example, select Message Type 17 (Constraint Message).

Infor Mongoose Core Development Guide | 12

Application Messages

5 Specify the Object Type. For example, select 0 (Table Object).

6 Specify the Message Severity.

7 Save the record. If the type is 17 (Constraint Message) or 18 (Delete Constraint), the Build
Messages grid is enabled, where you can specify this information:

• If the Message Text in the main grid has multiple substitution expressions (&1, &2, etc.), add a
row with a Sequence Number corresponding to each of the substitution expressions.

• To reference the substitution text to use, either specify a Message Number from the Maintain
Application Messages form or specify another existing Object Name.

• A Message Number is always required. Specify MG_1 to indicate that the value in the Object
Name field is to be used to look up the substitution text. If the Message Number is any value
other than MG_1, then that value is used to look up the message text on the Maintain Application
Messages form.

• If the Object Name field is used, select the appropriate value from the drop-down list.
• The Message Text field displays the text that will be displayed in place of the substitution

expression.

8 Save the record again.

9 If your company uses source code control, click Generate Message Script File. In the Generate
Application Messages Script form, specify the appropriate file path and filter information, and click
Generate SQL Script File.

Infor Mongoose Core Development Guide | 13

Application Messages

Chapter 2: IDOs

Understanding IDOs
An Intelligent Data Object (IDO) is a business object that encapsulates units of information and logic
that are called from the client layer to interact with data in the database. The job of the IDO is to transport
collections of data back and forth, with any validation or rules needed, between the client and the
database.

IDO Elements

An IDO consists of these elements:

• A set of one or more SQL tables. Each table contains the data for a specified part of the application
and must include columns (properties) that Mongoose requires to work properly.

• A set of properties. A property may represent persistent data stored in the application database,
derived data, or temporary data used to communicate information to the middle tier. A property may
also represent a whole subcollection of data.

• A set of standard methods. All IDOs implement the methods LoadCollection, UpdateCollection,
GetPropertyInfo, and Invoke:
• LoadCollection retrieves a collection of rows from the database.
• UpdateCollection takes a set of rows marked for insert, update, or delete, and executes the

appropriate SQL code against the database.
• GetPropertyInfo returns detailed information about the properties supported by the IDO.
• Invoke allows you to execute a custom method.

Through configurations, application databases are linked with an objects database and a forms database.

Definining an IDO

IDO forms serve as a development environment for IDOs. IDO definitions are stored as metadata in
the objects database. You can edit the metadata through the IDO forms.

The IDOs form is where you start to define an IDO. IDO definitions include:

• Attributes for the IDO itself
• References to tables in the application database
• Property definitions for table columns
• Metadata about methods defined for the IDO

You can access all of these elements from this form. You can also access the row-level security that
can be defined for IDOs.

Infor Mongoose Core Development Guide | 14

IDOs

The metadata that you edit in the IDOs form is stored in the Objects database.

Existing IDOs must be checked out before they can be edited. You can only check out IDOs that have
the same Access As setting as your environment.

For more information, see Access As Field.

For more information about the tasks you can perform, see these topics:

• Adding an IDO on page 27
• Viewing and Understanding an IDO Definition on page 17
• Editing IDOs on page 28
• Deleting an IDO on page 29

Note: You can use deletion rules to determine what is to happen when one or more records meet
specified criteria for other IDOs that reference properties in the one you want to delete. Define these
deletion rules on the Rules tab. For more information, see IDO Deletion Rules on page 29.

• Editing or Removing IDO Tables on page 34
• Adding Base or Secondary Tables to IDOs on page 33
• Editing an IDO Property on page 39
• Adding a Property to an IDO on page 39
• Editing Methods on page 37
• Adding a Method to an IDO on page 36

Using an IDO

Forms use IDOs in multiple ways. Forms that interact with the application database data define
collections based on IDOs. Many types of validators and list sources are built over IDOs.

The Application Event System (AES) leverages IDOs. Many of the framework AES events are generated
as the application operates on IDOs. Many of the actions provided in AES operate on IDOs, allowing
you to quickly define business processes, automation rules, or general server-side logic in your
application.

Extend and Replace IDOs
The IDO development system allows a developer to create a new IDO that inherits all the properties,
methods, tables, and the extension class from an existing IDO. The relationship between the created
IDO and the base IDO is called an "extends" relationship; the new IDO inherits from the base IDO and
extends it.

The developer can optionally flag an extending IDO as a replacement for the base IDO. When an
extending IDO replaces its base IDO, all IDO requests that are targeted for the base IDO are rerouted
through the extending IDO. These requests are the GetPropertyInfo, LoadCollection, UpdateCollection,
and Invoke requests.

The options Extends and Extend and Replace are available in the New IDO Wizard. See Adding an
IDO on page 27.

Infor Mongoose Core Development Guide | 15

IDOs

An extending IDO (one with a base IDO) can only make additive changes to the base IDO. That is,
new properties, methods, tables, and an extension class can be added, but none of the base properties,
methods, tables, or extension classes can be modified or deleted. New bound properties can be bound
to columns from tables in the extending IDO or in any base IDO. Likewise, new derived properties can
reference properties in the extending IDO as well as properties in any base IDO.

An extending IDO may itself be extended by one or more other IDOs. There is no hard limit to the
number of levels in an inheritance chain. While any number of extending IDOs can share the same
base IDO, no more than one sibling IDO can be flagged as a replacement for the base IDO.

When the IDO runtime processes IDO requests, it generates events that may be handled by IDO
extension classes. If an extending IDO has one or more base IDOs that have extension classes
associated with them, the events will fire in all extension classes, but the order is indeterminate.

The base IDO and the replace flag can only be set when creating a new IDO. The attributes are read-only
for existing IDOs.

Working with IDO Projects

Adding an IDO Project
An IDO project is a group of one or more IDOs.

1 Open the IDO Projects form.

2 Select Actions>New or click the Create a New Object tool bar button.

3 Specify the name of your project. The name must follow these rules:

• Be unique in the Objects database
• Consist of alphanumeric characters (no spaces)
• Begin with a letter
• Be no longer than 30 characters.

4 Select Actions>Save or click the save button on the tool bar.

Deleting IDO Projects
You can delete any project in the current Objects database. Deleting a project is not allowed if any
IDOs are attached to the project.

To delete an IDO project:

1 In theIDO Projects form, select the desired project.

2 Select Actions>Delete.

Infor Mongoose Core Development Guide | 16

IDOs

3 Save your changes.

Working with IDOs

The Basics

Viewing and Understanding an IDO Definition
To view the elements and attributes of an IDO:

1 Open the IDOs form.

2 In the grid view, select the IDO you want to view.

3 Use the fields in the Attributes group to view this identifying information about the IDO:

• The name of the IDO
• The IDO project with which it is associated
• Any IDO-level properties or associated property classes
• Other advanced attributes the IDO might have

For more information about specific attributes and elements in this group, see the context-sensitive
help for the specific attribute or element.

4 In the source control status fields, view the revision status and check-out status of the IDO.

5 Use these buttons to access a number of different forms from which you can gain additional
information about elements of the IDO, add elements to the IDO, and make other modifications to
the IDO, as described in this table:

Actions you can take on this formForm that is dis-
played

Button

View, add, and edit tables in the IDOIDO TablesTables

View, add, and edit properties for a designated table in
the IDO

IDO PropertiesProperties

View, specify, and edit methods and stored procedures
used within an IDO

IDO MethodsMethods

View, specify, and edit criteria by which the data from the
IDO collection is filtered

Row Authoriza-
tions

Filters

Add an IDO to the associated IDO projectNew IDO WizardNew IDO

Infor Mongoose Core Development Guide | 17

IDOs

Actions you can take on this formForm that is dis-
played

Button

• Define a base table for an IDO
• Add or remove a secondary table
• Define joins between the tables used in an IDO

New TableNew Table

Add a property to a designated tableNew PropertyNew Property

Define a new method to be used with the IDONew MethodNew Method

6 Use these tabs to view a summary of the elements and rules associated with the selected IDO:

Displays a list and condensed view of this informationTab

All the tables associated with the IDOTables

All the properties defined in the IDO Properties

All the methods associated with the IDOMethods

The filters applied to the IDO, whether active or notFilters

The rules that define relationships between IDOs and the policies to enforce
when records are deleted

Rules

About Source Control
You can use a source control system to allow multiple developers in the system the ability to customize
and maintain forms without having to worry about overwriting one another's changes.

Multiple source control options are supported:

• Microsoft Visual SourceSafe
• Microsoft Team Foundation Server
• Apache Subversion

If you plan to use any of these source control systems to manage changes to forms and other system
components, you must take these steps:

• Obtain, install, and configure the source control software.
• Use the Configuration Manager to configure the source control software to work with your system.

For more information, see the Installation Guide and the online help for the Configuration Manager.
• On the Users form, Source Control tab, configure the user profile for each system user who is

authorized to check forms and other components in and out.
Note: This is a change from some previous versions, where the application itself was configured to
use the source control system, and not individual users.

Infor Mongoose Core Development Guide | 18

IDOs

Comparing IDOs during check-in
Before you check in an IDO that you have modified, you can compare it with the current version. You
can use a file comparison tool to compare the new and the current version of an IDO. You must set
up a comparison tool in User Preferences.

When you click Compare on the IDO Collections form or the Mass Check In form, two XML files are
created. The compare tool that you specified in User Preferences opens these two XML files to
compare the contents.

About Non-Mongoose Data Used in Mongoose Applications
You can incorporate data from a non-Mongoose source, for example a legacy application that is being
converted to a Mongoose base. However, certain schema elements required by Mongoose often do
not exist in the non-Mongoose data source, as described in this topic.

To incorporate these data sources into your Mongoose-based application, you must create views that
provide the schema elements required by Mongoose.

See Including Data from an External Database into a Mongoose Application on page 21.

Note: Currently, only SQL Server, Oracle, DB2, Postgres, and Progress data sources can be linked
to Mongoose applications.

Unicode Support

Mongoose application databases are designed to support Unicode, but other data sources might not
support Unicode. To avoid improper scanning of indexes in the non-Mongoose data sources, you may
need to set the “Non unicode literal” process default in the Mongoose application.

Optimistic Locking

Mongoose databases use the RecordDate property to provide optimistic locking. In many cases,
however, the non-Mongoose data source does not have a RecordDate column. So, one of the major
problems with using non-Mongoose data sources is the coordination of optimistic locking. Both the
IDO Linked Databases form and the IDO Linked Tables form provide options to specify a column to
be used for optimistic locking in the non-Mongoose data source.

These options include:

• Allowing Mongoose to identify whether a RecordDate column exists in the non-Mongoose data
source

• Designating a default column on the IDO Linked Databases form. This is the name of a column
that is normally used for optimistic locking by the non-Mongoose tables, if such a column exists.

• Designating a column for optimistic locking on the IDO Linked Tables form

If none of these options exist, the literal string "NODATE" is designated as the RecordDate value.
Because this literal string is applied to any access of the non-Mongoose data source, no optimistic
locking occurs.

Infor Mongoose Core Development Guide | 19

IDOs

About the Mongoose View

The created Mongoose view over the non-Mongoose data source includes the columns from the data
source plus these additional columns, required by Mongoose for processing:

• RecordDate, used for optimistic locking in Mongoose. The system maps whatever column you have
assigned to use for optimistic locking to this column, as described above. During run time, Mongoose
checks to see if this value has been modified elsewhere since the data was first queried, before
your modifications.

• RowPointer, required to be a value that is unique for the entire table. For Outrigger data sources,
this value is derived by concatenating the primary key values from each row in the external table.

After this view is created, you can create IDOs and forms, and perform read and write operations on
the linked database table like any other Mongoose database table. One exception is that you cannot
use the non-Mongoose database and tables for any event action where the workflow must be suspended.

See the Guide to the Application Event System.

Including Data from a Different SQL Database into Your Application
To incorporate data from a non-Mongoose linked SQL Server database into a Mongoose-based
application, you must specify information about the other database in the IDO Linked Database form
and the IDO Linked Tables form.

Note: If you want to link to a non-Unicode database, use the Process Defaults form to set the process
default for Non Unicode Literal. This helps ensure that the database indexes are scanned and accessed
properly when performing queries.

To incorporate data from a non-Mongoose SQL database for use in a Mongoose-based application:

1 Open the IDO Linked Database form and specify these values:

Link Database
Specify the name that is to identify the database in Mongoose. This is a Mongoose internal
designation only and need not be the same as the actual database name.

Database Name
Specify the SQL Server name of the database to which you want to link. If this database resides
in the same location as the Mongoose databases, you can provide just the name of the database.
If this database resides in a location other than the Mongoose databases, you must also provide
the location of the database. Use this format: databaseServer . databaseName
Note: The database administrator must first create a linked server relationship using the SQL
Server configuration tools.

Optimistic Lock Column Name
Optionally, specify the name of a column that might be available for optimistic locking in the
non-Mongoose database. If no specific column is designated on the IDO Linked Tables form, this
value is used as the default optimistic lock setting.

2 Save your changes.

3 Open the IDO Linked Tables form to verify and adjust the column settings for the non-Mongoose
table:

Infor Mongoose Core Development Guide | 20

IDOs

• Verify that the columns listed in the Column Name column match those of the non-Mongoose
table.

• Optionally, rename the View Column Names as you want them to display in your Mongoose
application.

• Verify that the primary keys for the non-Mongoose table are correct. Modify the choices for keys
as necessary.

• Optionally, select the column to use for optimistic locking in the non-Mongoose database.
Mongoose designates the NODATE literal string for the "RecordDate" value, and no optimistic
locking is performed when these conditions exist:
• No "RecordDate" column exists in the non-Mongoose table.
• The column specified in the Optimistic Lock Column Name field of the IDO Linked

Databases form does not exist in the non-Mongoose table.
• No column is designated for optimistic locking on the IDO Linked Tables form.

4 To create the Mongoose view, click Create View.

Mongoose creates a view that includes the columns from the linked table, along with columns and
values for:

• "RecordDate", used for optimistic locking
• "RowPointer", required to be a value that is unique for the entire table
• "AddMongooseFields", with a literal value of 1, which is used internally

You can now use the linked database and tables in the same way that you use any database created
within Mongoose. You can create IDOs and forms, and perform read-write operations on them like any
other Mongoose database. However, you cannot use the non-Mongoose SQL database and tables for
any event action where the workflow must be suspended. See the Guide to the Application Event
System.

Including Data from an External Database into a Mongoose
Application
Mongoose-based applications can communicate with external databases hosted on various types of
servers through the IDO layer. To set up communication, use these steps.

If you want to link to a non-Unicode database, use the Process Defaults form to set the process default
forNon Unicode Literal. This ensures that the database indexes are scanned and accessed properly
when performing queries.

1 In the Outrigger Profiles form, create a profile for the database with these values:

Note: This step is not necessary for a SQL Server database hosted on the same server as the
Mongoose database, or for a SQL Server database hosted on a linked server.

Database Type
Specify the type of outrigger database to connect to.

Data Source
If you select DB2 database type, specify the schema name.
If you select Oracle database type with option Direct=False, specify the Oracle service name as
defined in the tnsnames.ora file.

Infor Mongoose Core Development Guide | 21

IDOs

If you select Oracle database type with option Direct=True, specify the Oracle server's IP address
or DNS name. See Notes below for additional options.
If you select Postgres, Progress, Redshift, or SQL Server as the database type, specify the
database name.

2 In the IDO Linked Databases form, create a new linked database record with these values:

Link Database
Specify the name that is to identify the database in Mongoose. This is a Mongoose internal
designation only and need not be the same as the actual database name.

Profile Name
Specify the profile created in step 1.
For a SQL Server database hosted on the same server as the Mongoose database, or for a SQL
Server database hosted on a linked server, leave this field blank.

Database Type
Defaults to the database type selected in Step 1, or SQL Server if the Profile Name is blank.

Database Name
For a SQL Server database hosted on the same server as the Mongoose database, specify the
name of the database to which you want to link.
For a SQL Server database hosted on a linked server, you must also provide the name of the server
using this format: databaseServer.databaseName.

Optimistic Lock Column Name
Optionally, specify the name of a column for optimistic locking that is present in some or all tables
in the non-Mongoose database. If no specific column is designated on the IDO Linked Tables form,
this value is used as the default optimistic lock setting.

3 In the Tables grid, specify or select an existing table name in the external database.

Optionally, rename the View Name to avoid conflict with any tables or views in your Mongoose
application or with other external tables being linked.

4 Save the table record to enable the buttons on the form.

5 Select the table and click Columns. This opens the IDO Linked Tables form, with an empty Columns
grid.

6 Click Repopulate to connect to the database and create the default column information for the
external table.

The results can be adjusted by following these steps:

a Verify that the columns listed in the Column Name column match those of the external table.
b Optionally, rename the View Column Names as you want them to be shown in the New IDO

Wizard form.
c Verify that the primary keys for the external table are correct, as specified in the Keys column.

Add or modify the choices for keys as necessary.

Note: Keys are not initialized for Redshift databases, so you must specify them manually.

d Optionally, select the column to use for optimistic locking in the external table. Mongoose
designates the NODATE literal string for the "RecordDate" value, and thus no optimistic locking
is performed, when these conditions exist:

Infor Mongoose Core Development Guide | 22

IDOs

• No "RecordDate" column exists in the external table.
• The column specified in the Optimistic Lock Column Name field of the IDO Linked

Databases form does not exist in the external table.
• No column is designated for optimistic locking on the IDO Linked Tables form.

7 Click Create View to create a new view in the Mongoose database that defines the necessary
columns and data types. The Mongoose view includes the columns from the external table, along
with these columns and values:

• "RecordDate", used for optimistic locking
• "RowPointer", required to be a value that is unique for the entire table

8 Use the New IDO Wizard form to create an IDO whose Primary Base Table is the View Name that
is created. The profile name is automatically populated, if applicable.

9 Use the Advanced IDO Attributes form to ensure that the proper Primary Keys are selected in the
correct order.

Notes about the process:

• The profile that is stored with an IDO definition is used to make an ApplicationDB object within the
IDO layer for read and write operations on the table, as well as for method calls to that database.

• As an alternative to building an IDO through the wizard, which allows basic read-write functionality
to the external database, you can use IDORuntime.Context.CreateOutriggerApplicationDB in a
custom program to provide direct access to the outrigger database.

See Example: Custom Code to Communicate with an Outrigger Database on page 24 for a code
sample that uses this assembly.

• For DB2 databases, a third party driver package must be installed and configured. Contact Support
for details.

• For Oracle and Progress databases, a license to a third party driver package must be purchased.
Contact Support for details.

• There are two modes for connecting to Oracle databases:
• If the application server is the Oracle server or Oracle Client software is installed on the application

server, in the Options grid, specify an option of Direct with a value of False, and in Data
Source, specify the Oracle service name (SID).

• Otherwise, in the Options grid, add an option of Direct with a value of True, in Data Source,
specify the Oracle server's IP address or DNS name, and add an additional option of SID with
a value of the Oracle service name on the Oracle server. You can also add an option of Port
with the port number to connect to. The default value is 1521. In this mode, you can perform
write operations on a linked table in an Oracle database only through a configuration where the
Use Distributed Transactions (DTC) flag is cleared.

• Asynchronous event handlers cannot be used when communicating with external databases.
• You cannot use the external database and tables for any event action where the workflow must be

suspended. See the Guide to the Application Event System.
• User-defined fields cannot be used when communicating with external databases.
• All external tables referenced in an IDO must exist in the same database.
• RowPointer and RecordDate properties are used by Mongoose but do not exist in external tables,

so those IDO properties are derived instead of pointing to base table columns.
• A called Oracle IDO method must be a function with a return type of integer.
• Due to driver limitations, these data-types are not supported for linked tables in a Progress database:

LVARBINARY, BLOB, LVARCHAR, CLOB, BINARY, VARBINARY, RECID, TINYINT, BIGINT.

Infor Mongoose Core Development Guide | 23

IDOs

• For Postgres databases, the BIT data-type is not supported because IDO Properties have no
equivalent data-type.

• Due to security requirements, you can perform read and write operations on a linked table in a DB2,
Oracle, Postgres, or Progress database only through a configuration, where the IDO Extension
Classes Run In Partial Trust flag is cleared.

• Due to driver limitations, you can perform write operations on a linked table in a DB2 or Progress
database only through a configuration, where the Use Distributed Transactions (DTC) flag is
cleared.

Example: Custom Code to Communicate with an Outrigger Database
This code sample uses a custom method IDORuntime.Context.CreateOutriggerApplicationDB to provide
direct access to an outrigger database. The database must first be linked to your Mongoose application
as described in Including Data from an Oracle Database into a Mongoose Application on page 21.

 public int IdoLinkOtherDbColPopulateSp(string linkedDatabase, string
 tableName, string optimisticColumnName, byte databaseType, string profile
Name, string infobar)
 {
 int result = 0;
 if (databaseType == 1) // SQL Server
 {
 if (!DoSqlServerColumnsSp(linkedDatabase, tableName, infobar
))
 return 16;
 else
 return 0;
 }

 if (!DeletePreviousColumns(linkedDatabase, tableName, infobar
))
 return 16;
 using (ApplicationDB db = IDORuntime.Context.CreateOutriggerAp
plicationDB(profileName))
 {
 IDbCommand cmd = db.Connection.CreateCommand();
 IDbDataParameter parm;

 cmd.CommandType = CommandType.Text;
 cmd.CommandText = @"
SELECT
 cols.COLUMN_NAME
 , cols.COLUMN_NAME As ViewColumnName
 , CASE WHEN DATA_TYPE IN ('VARCHAR', 'NVARCHAR', 'VARCHAR2', 'NVARCHAR2')
 THEN 1 ELSE 0 END AS IsCharacterColumn
 , CASE WHEN xx.TABLE_NAME IS NULL THEN 0 ELSE 1 END AS IsKeyColumn
, cols.DATA_TYPE
, CASE WHEN cols.DATA_PRECISION IS NULL THEN cols.DATA_LENGTH ELSE DATA_PRE
CISION END
, cols.DATA_SCALE
FROM user_tab_cols cols

Infor Mongoose Core Development Guide | 24

IDOs

LEFT OUTER JOIN (
select ucc.table_name, ucc.column_name
from user_constraints uc
inner join user_cons_columns ucc on
 ucc.table_name = uc.table_name
and ucc.constraint_name = uc.constraint_name
and uc.constraint_type = 'P'
) xx ON
xx.TABLE_NAME = cols.TABLE_NAME
AND xx.COLUMN_NAME = cols.COLUMN_NAME
WHERE cols.TABLE_NAME = :ptable
";
 parm = cmd.CreateParameter();
 parm.ParameterName = "ptable";
 parm.Value = tableName.ToUpper();
 cmd.Parameters.Add(parm);
 cmd.CommandType = CommandType.Text;
 cmd.Connection = db.Connection;
 IDataReader colReader = cmd.ExecuteReader();
 while (colReader.Read())
 {
 string colName = colReader.GetString(0);
 string viewColName = colReader.GetString(1);
 byte isCharacter = colReader.GetByte(2);
 byte isKey = colReader.GetByte(3);
 byte isOptimisticLock = 0;
 string propertyDataType = colReader.GetString(4);
 int propertyLength = colReader.GetInt32(5);
 int? propertyScale = colReader.GetInt32(6);
 if (colReader.IsDBNull(6))
 propertyScale = null;
 if (optimisticColumnName == colName)
 isOptimisticLock = 1;
 if (!InsertOneColumn(linkedDatabase, tableName, colName,
 viewColName, isCharacter, isKey, isOptimisticLock, propertyDataType,
propertyLength, propertyScale, infobar))
 {
 break;
 }
 }
 }
 return result;
 }

Checking In and Out

Checking In IDOs

When you finish working with an IDO, you check it into the current objects database. If you use a source
control system, checking an IDO into the objects database also checks it into the source control system.
(New IDOs do not exist in source control until you check them in.)

Infor Mongoose Core Development Guide | 25

IDOs

To check in the current IDO:

1 Open the IDOs form and select the desired IDO.

2 Click Check In.

3 You are prompted to enter comments. Check In comments are stored in the source control system.

4 Click OK.

Note: You may check in multiple IDOs on the Mass Check In form.

Checking in Multiple Objects
Note: Click Refresh on any tab to ensure that you are viewing the latest records.

To check in multiple objects at once:

1 Open the Mass Check In form.

2 On each tab, specify the files to check in by selecting the Inc option for each row, or by clicking
Select All.

3 Optionally, to attach and check-in assembly images or symbols with an IDO extension class assembly:

a On the IDO Assemblies tab, select the row of the IDO extension class assembly.
b Click Assembly Image or Symbols.
c Specify the image or symbol file to attach.
d Click OK.

Note: After importing an assembly image, or symbol, on the Mass Check In form, the collection
is saved automatically.

4 Click Check In.

5 If your source control application requires it, specify any additional required information, such as
comments or tracking numbers.

Checking Out IDOs

If an IDO has been checked into the current Objects database, you must check it out before you can
work with it.

To check out the current IDO:

1 Open the IDOs form and select the desired IDO.

2 Click Check Out.

Infor Mongoose Core Development Guide | 26

IDOs

Adding, Editing and Deleting IDOs

Adding an IDO

An IDO (Intelligent Data Object) provides a set of properties and methods, and implements the IDO
request interface (LoadCollection, UpdateCollection, and Invoke).

To add an IDO to the current project:

1 From either the IDO Projects or IDOs form, click New IDO.

2 In the first page of the New IDO Wizard,specify this information:

• The IDO project with which this IDO is associated
• The name of the primary base table
• An alias by which the primary base table is to be known
• The name of the IDO

3 Click Next.
Note: If you specify a value for the Extends attribute, page 2 of the wizard is not used and the Next
button is disabled. In this case, click Finish.

4 In the second page of the wizard, create bound properties for this IDO that are based on columns
in the primary base table in the application database.

By default, all of the columns in the primary base table are included as properties in the IDO.

• To remove a column and omit it as a property, clear the Inc check box for that column.
• To change a single property name, specify the new name in the Property Name field.
• To make changes to all property names at one time, click Massage Property Names, which

opens the Massage Options form.

5 Click Finish.

The new IDO is displayed, automatically checked out to you.

Setting Advanced IDO Attributes

The advanced attributes of an IDO include its primary key properties, and other options.

Primary Keys reflect the primary key properties of the IDO's base table in the application or external
database. The system automatically detects primary key properties except for IDOs based on an SQL
view. The order of the IDO's primary key properties should match the order used in the application
underlying database table. This order determines the default sort order for the IDO, which may be
overridden in the application or elsewhere.

To add or edit primary keys for an IDO:

1 On the IDOs form, select the IDO.

2 Click Check Out.
3 Click Advanced Attributes.

Infor Mongoose Core Development Guide | 27

IDOs

4 In the Advanced IDO Attributes form, the Primary Keys list indicates the primary keys detected
by the system and their sort order. The IDO Properties list shows the properties of the IDO. Use
these steps to work with primary keys:

• To add a property as a primary key, select the property in the IDO Properties list. Then click
Add.

• To set the sort order for the primary keys, select a primary key in the Primary Keys list. Then
click Up or Down.

• To remove a primary key, select the primary key in the Primary Keys list. Then click Remove.

5 Click OK to save your changes.

Other advanced attributes control the behavior of IDO operation.

Description or valid valuesAttribute

This flag controls whether appropriate quoting is
applied to table aliases during SQL generation
for the tables in this IDO. Set this flag to protect
any table alias that represents an SQL keyword
or reserved word in the query language of the
server hosting the table’s database. If you select
all table aliases to avoid duplicating SQL key-
words, this flag can be cleared.

Quote Table Aliases

Editing IDOs

After you make changes in the application database, for example, modification of tables or stored
procedures, you must update (edit) any IDO that is associated with the changed tables or stored
procedures.

To edit an IDO:

1 In the IDOs form, select the IDO to edit.

2 Click Check Out.
3 You can make many required changes directly on the IDOs form.

You might also need to open the IDO Tables form, the IDO Properties form, or the IDO Methods
form and make any necessary adjustments there.

 For example, you must update derived, subcollection, and unbound properties manually.

Note: You cannot change the IDO name.

Canceling or Undoing Changes to IDOs

After you check out an IDO and change it, you can cancel your changes before you check it back into
the objects database.

To undo changes to the current IDO:

1 Open the IDOs form and select the desired IDO.

2 Select Undo Check Out.

Infor Mongoose Core Development Guide | 28

IDOs

You might have to refresh or close the form to see the change.

Deleting an IDO

Deleting an IDO removes all the methods and properties associated with it in the Objects database.

To delete an IDO:

1 On the IDOs form, select the IDO you want to delete.

2 Click Check Out.

If an IDO has never been checked in, you can delete it without checking it in and then back out first.

3 Use the Rules tab to view or maintain the rules for what to do when an IDO related to this one is
deleted.

4 Select Actions > Delete.

5 Save your changes.

IDO Deletion Rules

For the deletion of IDOs, you can define zero or more rules. Rules are used to identify this information:

• The IDO property or properties that are referenced by another IDO
• The referencing IDO
• The property or properties on the referencing IDO that correspond to the referenced properties

For each rule, you can specify one of these actions to take when one or more records match the rule
definition for deletion:

• Restrict: Aborts the deletion and displays a message indicating that the delete operation is not
allowed

For example: "Cannot delete record. At least one sales order exists for this customer."

Note: For Restrict actions, you must specify translatable application message strings to be
substituted in the delete operation.

• Remove: Allows the deletion but sets the referencing properties to NULL
• Cascade: Allows the deletion but first deletes any referencing records (subcollections)

You can optionally specify this information:

• Specify the translatable message to display to the end user if a delete is prevented
• Supply a filter to further restrict the rows to which the delete policy applies

Infor Mongoose Core Development Guide | 29

IDOs

Exporting and Importing

Exporting IDOs

To export an IDO for use in a different Objects database:

1 On the IDO Export Wizard form, click Browse and specify a directory path and a filename for the
export file to be created.

The file type must be XML.

Note: In a partial trust situation or in the web client, there is no Browse button. In these cases, you
have a couple options to specify the path and filename:

• You can enter a full path and filename to a directory on your local computer. For example:
C:\Temp\MyIDO.xml

• You can specify just a filename, in which case the system either prompts the user for a save
location, or saves the file to the user's default download location.

2 In the IDOs to Export area, select the desired IDO project from the Project Name drop-down list.
Then select one of these options:

• To export all IDOs in the current project, select All IDOs in selected project.
• To export only some IDOs, select Selected and then select the IDOs you want from the list.

3 Optionally, you can select property classes and IDO extension class assemblies to export.

4 When you have selected all the objects to export, click OK.

Exporting IDO Extension Class Assemblies

To export an IDO extension class assembly for use with a different Objects database:

1 On the IDO Export Wizard form, click Browse and specify a directory path and a filename for the
export file to be created.

The file type must be XML.

Note: In a partial trust situation or in the web client, there is no Browse button. In these cases, you
must enter the full path and filename manually. The path must be to a directory on your local
computer. For example: C:\Temp\MyIDOExtensionClassAssembly.xml

2 In the IDOs to Export section, select the IDO associated with the assembly you want to export.

3 In the IDO Assemblies to Export areas, select one of these options:

• To export all IDO extension class assemblies in the current Objects, select All.
• To export only IDO extension class assemblies used by the IDOs selected in the IDOs to Export

section, select Referenced by Selected IDOs.
• To export only some IDO extension class assemblies, select Selected. Then select the assemblies

you want from the list.

4 When you have selected all the objects to export, click OK.

Infor Mongoose Core Development Guide | 30

IDOs

Exporting Property Classes

To export a property class for use with a different Objects database:

1 On the IDO Export Wizard form, click Browse and specify a directory path and a filename for the
export file to be created.

The file type must be XML.

Note: In a partial trust situation or in the web client, there is no Browse button. In these cases, In
these cases, you have a couple options to specify the path and filename:

• You can enter a full path and filename to a directory on your local computer. For example:
C:\Temp\MyIDO.xml

• You can specify just a filename, in which case the system either prompts the user for a save
location, or saves the file to the user's default download location.

2 In the IDOs to Export section, select the desired IDO.

3 In the Property Classes to Export section, select one of the these options:

• To export all property classes in the current Objects database, select All.
• To export only property classes used by the IDOs selected in the IDOs to Export section, select

Referenced by selected IDOs.
• To export only some property classes, select Selected. Then select the property classes you

want from the list.

4 When you have selected all the objects to export, click OK.

Importing IDOs

To import an IDO that was exported from a different Objects database:

1 On the IDO Import Wizard form, click Browse and specify a directory path and a filename for the
file to be imported.

The IDOs contained in the file you identified are displayed.

The file must have been created with the IDO Export Wizard, and the file type must be XML.

Note: In a partial trust situation or in the web client, there is no Import File Name field or Browse
button. Instead, you must click Import XML and use the Import Binary Data From File dialog box
to locate and upload the XML file you want from your local computer.

2 In the IDOs IDOs To Import section, select one of these options:

• To import all IDOs contained in the XML file, select All.
• To import only some IDOs, select Selected and then select the IDOs you want.

3 When you have selected all the objects to import, click OK.

Importing IDO Extension Class Assemblies

To import an IDO extension class assembly that has been exported from another Objects database:

1 On the IDO Import Wizard form, click Browse and specify a directory path and a filename for the
file to be imported.

Infor Mongoose Core Development Guide | 31

IDOs

The IDO extension class assemblies contained in the file you identified are displayed.

The file must have been created with the IDO Export Wizard, and the file type must be XML.

Note: In a partial trust situation or in the web client, there is no Import File Name field or Browse
button. Instead, you must click Import XML and use the Import Binary Data From File dialog box
to locate and upload the XML file you want from your local computer.

2 In the IDOs To Import section, select one of these options:

• To not specify any particular IDO for the import action, select None.
• To specify all IDOs within the XML file, select All.
• To select only certain IDOs to include in the import action, select Selected and then select the

IDOs you want from the list that displays.

3 In the IDO Assemblies To Import area, select one of these options:

• To import all IDO extension class assemblies contained in the XML file, select All.
• To import only some IDO extension class assemblies, select Selected and then select the

assemblies you want.

4 When you have selected all the objects to import, click OK.

Importing Property Classes

To import a property class from a different Objects database:

1 On the IDO Import Wizard form, click Browse and specify a directory path and a filename for the
file to be imported.

The property classes contained in the file you identified are displayed.

The file must have been created with the IDO Export Wizard, and the file type must be XML.

Note: In a partial trust situation or in the web client, there is no Import File Name field or Browse
button. Instead, you must click Import XML and use the Import Binary Data From File dialog box
to locate and upload the XML file you want from your local computer.

2 In the Property Classes To Import section, select one of these options:

• To import all property classes contained in the XML file, select All.
• To import only some property classes, select Selected and then select the property classes you

want.

3 When you have selected all the objects to import, click OK.

Working with Tables

Understanding Tables Used by IDOs
Although there are many aspects of IDOs that do not correspond directly to tables in a SQL Server
relational database, SQL Server tables provide the foundation on which any IDO is built.

Infor Mongoose Core Development Guide | 32

IDOs

• All tables used by IDOs must have certain required columns and triggers.
• Each IDO must have at least one base table.
• To include read-only information from associated tables in an IDO, use secondary tables.
• For most IDOs, primary key properties used by the base table in the application database are

detected automatically. However, primary key properties for IDOs based on a SQL View must be
specified manually. To identify the primary key properties and their sort order, set the IDO's advanced
attributes.

About IDO Base Tables
Every IDO must have at least one base table. An IDO's base tables are used to store all updateable,
persistent data associated with the IDO. When you create a new IDO, you are asked to provide the
name of the IDO's primary base table. The primary base table is the central table to which any other
table for the IDO is related in some way.

About IDO Secondary Tables
Sometimes you may want to include read-only information from associated tables in your IDO. Suppose,
for instance, that you store a Unit of Measure code in your base table. The description associated with
this code is stored in a separate Unit of Measure code table. You can publish the Unit of Measure
description on your IDO by adding a secondary table to the IDO.

Columns from secondary tables can be published on the IDO as read-only properties. Secondary tables
do not need to have the same primary key columns as the base tables, but you must specify the join
criteria needed to include columns from secondary tables in your IDO.

Adding Base or Secondary Tables to IDOs
When you add an IDO, you must identify a primary base table.

If there are columns in other tables that have a relationship with the primary base table and if you want
to expose these columns as properties on the IDO, you must also add the related table to the IDO as
either a base table or a secondary table.

To add base or secondary tables to an IDO:

1 In the IDOs form, select the IDO to which you want to add tables.

2 Click Check Out.
3 Click New Table.

4 In the New Table form, specify this information:

• Table Name
• Table Alias
• Table Type
• Join Type

Infor Mongoose Core Development Guide | 33

IDOs

5 If you are adding a secondary table, specify the join conditions.

6 Click OK.

The table and join conditions are added to the IDO.

Editing or Removing IDO Tables
If tables in the application database change, you must update the table definitions in any IDO associated
with those tables. You can edit or remove tables from an IDO, but you cannot remove the primary base
table.

To edit or remove a table from an IDO:

1 On the IDOs form, select the IDO you want.

2 Click Check Out.
3 Click Tables to display the IDO Tables form:

• To edit a table (including the join conditions), select the table and click Edit Table to display the
Edit Table form.

• To delete a table, select the table and then select Actions > Delete or click the Delete tool bar
button.

Specifying Join Conditions for Secondary Tables
When you work with secondary tables, you can specify join conditions by selecting parameters from
controls in the Edit Table form. For more complex join conditions, you can specify the join conditions
manually.

To specify join conditions by selecting parameters:

1 In the IDO Tables form, click Add or Edit to add or edit a secondary table. The Edit Table or New
Table form is displayed.

2 In the first Join Conditions field, select the column in the current table being joined to.

3 In the second Join Conditions field, select the table being joined.

4 In the third Join Conditions field, select the column being joined.

5 Click Add to display the conditions in the large edit box.

6 Click OK.

To manually enter join conditions:

1 In the IDO Tables form, click Add or Edit to add or edit a secondary table. The Edit Table or New
Table form is displayed.

2 Specify your join conditions as a SQL SELECT statement in the large edit box. If necessary, you
can use the three Join Conditions fields to select columns and tables and insert them as parameters
in your SQL statement. The parameters are inserted as AND statements.

3 Click OK.

Infor Mongoose Core Development Guide | 34

IDOs

Tip: Using Multiple Base Tables
Most IDOs should have only a single base table. Sometimes, however, you might find it useful to
implement an IDO with multiple base tables. Normally, multiple base tables are required only when
you are working with an existing database schema that was designed for other purposes.

Non-primary base tables function as extensions to the primary base table. They must have the same
key columns as the primary base table. The non-primary base table may store either of these types of
data:

• Optional data, where a corresponding record might or might not exist for each record in the primary
base table.

• Required data, where a corresponding record must exist for each record in the primary base table.

If a non-primary base table stores optional data, then it must be joined using a left outer join.

It is the responsibility of the Insert trigger on the primary base table to insert records into each required
base table.

It is the responsibility of the Delete trigger on the primary base table to delete records in all related
base tables, whether they are optional or required.

Working with Methods

Understanding IDO Methods
IDOs have two kinds of methods, standard methods and custom methods.

Standard Methods

All IDOs implement the methods LoadCollection, UpdateCollection, GetPropertyInfo, and Invoke.

• LoadCollection retrieves a collection of rows from the database.
• UpdateCollection takes a set of rows marked for insert, update, or delete, and executes the

appropriate SQL code against the database.
• GetPropertyInfo returns detailed information about the properties supported by the IDO.
• Invoke allows you to execute a custom method.

Custom Methods

Custom methods are defined by the developer. You can define custom methods that are implemented
in Transact-SQL. Transact-SQL is the preferred programming language because it is easier to use for
most of these tasks and because the IDO forms provide useful facilities for defining methods based
on these procedures.

There are two kinds of methods based on Transact-SQL stored procedures: methods based on stored
procedures without a result set and methods based on stored procedures with a result set.

Infor Mongoose Core Development Guide | 35

IDOs

A stored procedure that does not return a result set may have input and output parameters, but it does
not select data to be returned to the caller.

A method that returns a result set (a list of values) to the caller may be used to populate collections.
A typical use is to populate drop-down list boxes in forms. You can also bind forms to these returned
sets.

About IDO Extension Classes
An IDO extension class is a .NET class that allows developers to extend the functionality of an existing
IDO by adding methods and event handlers. IDO extension classes are compiled into a .NET class
library assembly and stored in the IDO metadata database. The IDO runtime loads these assemblies
on demand and calls methods and event handlers in the extension classes in response to IDO requests.

An extension class is short-lived; it is created at the start of a request and disposed of immediately
when the response is completed. Therefore, no state should be stored in an extension class.

Any public class in an IDO extension class assembly can be identified as the extension class for an
IDO in the IDO metadata database. IDO extension class assemblies are .NET Framework class libraries
that are created using any of the .NET languages.

Transactions and IDO Methods
IDO methods can be run within the context of a transaction. To reduce transactional overhead and
blocking, you can set a method to run without a transaction.

Methods that do not update data in the database can likely be run without a transaction. A method that
runs a long time in a transaction, potentially blocking other transactions, may perform better if it is run
without a transaction. You can control the size of individual transactions by starting them and committing
or rolling them back within a stored procedure.

To set a method to run within a transaction, select the Transactional check box on the IDO Methods
form. At run time, the method starts a transaction before the stored procedure is called.

To set a method to run without a transaction, clear the Transactional check box. The method does
not start a transaction before the stored procedure is called.

Adding a Method to an IDO
A method is based on a stored procedure in the application database or an extension class method.

1 Open the IDOs form.

2 Select an IDO and click Check Out.
3 Click New Method.

4 In the Method Type field in the New Methods form, select the type of procedure being called by
this method.

Infor Mongoose Core Development Guide | 36

IDOs

You can specify a method that either does or does not return a result set.

5 Select the Stored Procedure from the list of stored procedures in the application database.

6 In the Method Name field, either select the method want from the drop-down list, or enter the name
of the new method.

The method name must be unique to this IDO.

7 If the method should be run as a transaction, select Transactional.
8 Click OK.

After you refresh, the new method displays in the IDOs form's Methods tab and is added to the IDO.

Editing Methods
After you modify a stored procedure in the application database, any method that is associated with
the stored procedure needs to be updated to reflect the changes.

To edit a method:

1 Open the IDOs form and select the IDO you want.

2 Click Check Out.
3 Click Methods.

4 In the IDO Methods form, select the method you want to update.

5 Specify and save your changes.

Deleting a Method or Property from an IDO
You can delete a method or property associated with an IDO.

To delete a method or property from an IDO:

1 In the IDOs form, select the IDO you want.

2 Click Check Out.
3 Depending on whether you want to delete a method or a property, click either Methods or Properties
4 Select the method or property to delete.

5 From the Actions menu, select Delete.

6 Save your changes.

Infor Mongoose Core Development Guide | 37

IDOs

Working with Properties

Understanding Properties

Bound Property

Bound properties are persistent properties whose values are stored in an application database table.
This is the most common type of property.

Derived Property

Derived properties are properties whose values are derived from SQL expressions. Use derived
properties to calculate values, to execute subqueries, or to call SQL functions.

Unbound Property

Unbound properties are properties whose values are not stored in a database table and consequently
are not persistent. Use this type of property to pass temporary values from a form to an IDO. This data
can be used by a custom insert, update, or delete method.

Subcollection Property

A subcollection property is a property that specifies a child IDO that is filtered from a parent IDO. A
subcollection is the child IDO whose returned collection is associated with, and dependent on, the
objects returned in the primary collection belonging to the parent IDO. Subcollections are the principal
mechanisms for defining hierarchical or parent-child data relationships. Use subcollections to implement
one-to-many relationships between IDOs.

The typical implementation of order lines in a business application is a good example of a subcollection.
Each order returns a collection of order lines. The system would define the order lines as a subcollection
of the order IDO.

Note that order lines are dependent on orders; that is, order lines cannot exist independently of their
parent orders. However, this is not a requirement of subcollections in general. For instance, you may
define a collection of customers as a subcollection of the collection of account managers. Each account
manager has a set of customers that he or she services. Customers can exist totally independently of
their account managers. It should be possible, for instance, to move a set of customers to a new account
manager and delete their old account manager from the system.

Subcollections can also be used to implement recursive data structures. A good example of this is a
typical implementation of a product structure or bill of materials. A product structure record typically
includes a reference to a set of child entities that are themselves product structure records. In this case,
you could define a product-structures IDO with a subcollection of product structures.

To define a subcollection, you must first define the collection class that characterizes the child IDO.
Then you must establish the relationship between the new child IDO and the parent IDO by creating
a subcollection property on the parent. In the case of orders and order lines, you would define an orders

Infor Mongoose Core Development Guide | 38

IDOs

collection and an order-lines collection. Then you would define the relationship between the two by
defining a subcollection property on the orders IDO.

Adding a Property to an IDO
1 Open the IDOs form.

2 Select an IDO and click Check Out.
3 Click New Property.

4 In the New Property form, select a type of binding for the new property, either Bound, Derived,
Unbound, or Subcollection.

5 Click Next.
6 Set the attributes for the type of property you selected.

7 Click Finish.

Editing an IDO Property
You can edit the IDO property for any table in the IDO. For example, you should edit bound properties
after the table column bound to the property is modified in the application database.

To edit an IDO property:

1 In the IDOs form, select the IDO you want.

2 Click Check Out.
3 Click Properties.

4 In the IDO Properties form, select the property you want to update and enter your changes.

Adding or Editing Validators for a Property or Class
You can add, edit, or change the order of validators for a property or property class.

1 To access the Edit Validators form, click the ellipses (...) button to the right of the Validators field
in either the IDO Properties form or the Property Classes form.

Note: Any validators you define here are executed by the IDO Runtime service during a collection
save operation. These validators are also inherited by any component on a form that is bound to
this property or to a property derived from that class.

2 On the main page of the form, click Add to add a validator.

3 On the Select Validator Type page, use the option buttons to select the type of validator to add:

• In Inline List
• In IDO Collection
• IDO Method

4 ClickNext. The page you go to is determined by your choice on this page.

Infor Mongoose Core Development Guide | 39

IDOs

5 The Set Properties From Inline List page displays in these cases:

• You select In Inline List on the Select Validator Type page and then click Next.
• You select an In Inline List validator on the main page and then click Edit.

Use this page to select additional properties to be set from the inline list on a successful validation.
On this page, use the grid to specify:

• The property to be updated if validation is successful (Property Name)
• The column from the inline list from which the value is to be taken (Inline List Column)

You can also optionally specify an error message to display if the validation fails.

6 The In Collection Validator page displays in these cases:

• You select In IDO Collection on the Select Validator Type page and then click Next.
• You select an In Collection validator on the main page and then click Edit.

Use this page to select the IDO and IDO property that are to be set on a successful validation. On
this page, use the grid to specify:

• The target property; that is, the property for which the new value is to be assigned if the validation
is successful

• The source property; that is, the property to be evaluated during the validation activity

You can also optionally set a filter and any additional properties to be set if the validation is successful.

Finally, you can also specify an error message to display if the validation fails.

7 The IDO Method Validator page displays in these cases:

• You select IDO Method on the Select Validator Type page and then click Next.
• You select an IDO Method validator on the main page and then click Edit.

Use this page to specify the IDO and method that are to be used to validate the property value.
Specify any parameters that the method requires in the grid. These parameters can be:

• Input only, both input and output, or message values (Type)
• Either property values or literal values (Source)

The validator then evaluates the Value at run time. If the Source specifies a property value, then
the Value is treated as a property value. if the Source specifies a literal value, then the Value is
treated as a literal value.

Finally, you can also specify an error message to display if the validation fails.

8 On the main page, to edit a selected validator, click Edit.

When there are multiple validators, you can rearrange the order in which they validate using the
Move Up and Move Down buttons.

9 To close this form and return any validator definitions to the parent form, click OK.

Creating an Inline List
Note: This topic applies to the creation of inline lists to use in conjunction with IDO properties and
property classes.

An inline list is a set of "hard-wired" values for a property that can be applied to a component. Such a
list is typically used when the number of values to appear in a combo box or other display is limited
and the values will be constant and unchanging.

Infor Mongoose Core Development Guide | 40

IDOs

To create an inline list for an IDO property or property class:

1 On the IDO Properties form or the Property Classes form, click the ellipses button (...) to the right
of the Inline List field.

2 In the Edit Inline List form, determine the size of your inline list by adding rows and/or columns.

You can add any number of rows or columns, but for inline lists, it is usually a good idea to keep
the number small. You should decide before creating the list exactly how many rows and how many
columns your list needs to have.

3 In the Column For Value field, specify by column number which column is to provide the values to
any components that use this property or property class.

4 In the Display Columns field, specify by column number which columns are to have their values
displayed when the list is used.

If you want to display multiple columns, separate the column numbers with commas.

Be aware that, although you can use translatable strings in these lists, the IDO Runtime Service cannot
access the string IDs. You can, however, resolve the string IDs at the user interface level.

For example, suppose you want to create an inline list with this information:

• A set of four severity levels: Low, Medium, High, and Severe
• A translatable string value for each level: sLow, sMedium, sHigh, sSevere
• A numerical value for each severity level, so that the list items can be presented in the correct order,

regardless of alphabetization or translation concerns

In this case, you would require two columns, one for the translatable strings and the other for the
numeric values. You would require four rows, one for each severity level.

Then, in the Column For Value field, you would want to specify the numeric column as the value for
the component using this property to use in creating the list in the correct order.

And finally, in the Display Columns field, you would want to specify the column containing the strings
as the values to display when the list is actually presented in the UI.

When you click OK in the Edit Inline List form, then, this metadata is created in the Inline List field:

ENTRIES(sLow\0,sMedium\1,sHigh\2,sSevere\3) DISPLAY(1) VALUE(2)

Creating an IDO Property Validator
Note: This topic applies to the creation of validators to use in conjunction with IDO properties and
property classes.

Validators are global objects that can be used to validate input or other actions taken by a user.

To create and assign a validator as part of an IDO property or property class:

1 On the IDO Properties form or the Property Classes form, click the ellipses button (...) to the right
of the Validators field.

2 On the main page of the form, click Add.

3 On the Select Validator Type page, select the type of validator you want to add.

4 Click Next.

Infor Mongoose Core Development Guide | 41

IDOs

The page you proceed to depends on the type you selected.

5 If you selected In Inline List, follow these steps:

a Click Add.
b In the Property Name field, specify the property you want to set a value for if the validation is

successful.
c In the Inline List Column field, specify the index of the column that is to contain the value of the

component bound to the property.
d Optionally, in the Error Message field, specify an application error message to display if validation

is not successful.
e Click OK and go on to Step 8.

6 If you selected In IDO Collection, follow these steps:

a In the IDO Name field, specify the IDO to use for validation.
b In the Property Name field, specify a property that you want to validate from the IDO collection

named in the IDO Name field.
c Optionally, in the Filter field, specify the IDO filter you want to use during validation.
d Click Add.
e In the Target Property field, specify the property to be updated from the IDO collection that is

being saved and validated.
f In the Source Property field, specify the property from the IDO being used for validation that

contains data to be copied into the target property.
g Optionally, in the Error Message field, specify an application error message to display if validation

is not successful.
h Click OK and go on to Step 8.

7 If you selected IDO Method, follow these steps:

a In the IDO Name field, specify the IDO that contains the method you want to validate.
b In the Method Name field, specify the method to be evaluated by this validator.
c Optionally, click Add. Then:

• In the Type field, specify whether the designated parameter is to be used for input only, both
input and output, or a message.

• In the Source field, specify whether the parameter is to treat the value as a property value or
treat it as a literal value.

• In the Value field, specify the value for the parameter that is to be passed to the method.

d Optionally, in the Error Message field, specify an application error message to display if validation
is not successful.

e Click OK and go on to Step 8.

8 If you are finished adding validators, to return the entire validator specification to the Validators
field, click OK.

Infor Mongoose Core Development Guide | 42

IDOs

Chapter 3: Form Control

Understanding Form Control
Form Control is a version-control tool for objects being developed for the presentation layer (client tier)
of an application in WinStudio. WinStudio is a form presentation and editing engine used to create and
modify forms and global objects. These objects are stored in the forms and templates databases that
are configured for WinStudio.

Form Control is used to access the objects stored in these forms and templates databases. Form
Control tracks versions of objects and supports access to a repository of versions and an archive of
deleted objects. Although implementing Form Control is optional, this tool is particularly useful when
several developers are working on an application, as it allows one developer to lock a form or global
object while working on it, so that other developers cannot work on the same object at the same time.

Use Form Control to check out objects from the "master" databases (which contain the current versions
of objects) to "run-time" databases (which temporarily store the objects) for editing. After editing the
objects in WinStudio, you then use Form Control to check the edited objects back in to the master
databases. If you use a source control system, Form Control also checks objects in to source control
when you check objects in to the master databases.

You can also delete objects from the master and run-time databases and can copy them to archive
databases. These previous versions of objects are then available through source control.

Note: You can use Form Control with login IDs having Site Developer editing permissions. When you
log in to Form Control, make sure you select Site in the Scope field.

Before any operation is made on objects, Form Control checks the master and run-time databases for
changes, and flushes the cache before proceeding with any operation.

Before You Begin

Before you can use Form Control, you must have at least one system configuration set up using
Configuration Manager. Use Configuration Manager to create a configuration, including a tools login
that is used to open Form Control and to track check-ins and check-outs. The tools login must have
Vendor Developer editing permissions in WinStudio.

For more information about setting up configurations, see the help for Configuration Manager.

Basic Functionality of Form Control

This diagram illustrates the basic functionality of Form Control:

Infor Mongoose Core Development Guide | 43

Form Control

Use Form Control to check out (from the master databases) any forms or global objects that you want
to edit. Form Control places copies of the objects in the run-time database while you have them checked
out.

After you check out an object, use WinStudio in Design Mode to make the desired changes. You can
also use WinStudio to create new objects. In either case, saving changes in WinStudio stores the
changes in the run-time database copy.

When you are finished working with the object in WinStudio, use Form Control to check the object back
in to the master database. You can check in at one time both objects that you checked out and new
objects you have created.

While using Form Control, keep this information in mind:

• Form Control works only with the vendor and site default versions of a form or global object. Only
developers with vendor or site developer editing permissions can create vendor or site default
versions.

• Checking out an object locks it for your use and prevents other developers from checking it out or
saving other changes to it.
Note: Other developers can view and work with the form or object in Design Mode, but they cannot
save their changes until you check it back in.

• Checking in objects that you checked out removes the lock on the object.
• If you create and save a new object, WinStudio saves the object in the appropriate run-time database.

It cannot be overwritten, because the object does not yet exist in the master database (until you
check it in).

• Checking in new objects adds them to the master databases and allows Form Control to track them.
• If you make and save changes to an object that is not checked out (to you or anyone else), your

changes will be overwritten the next time anyone checks that object out. To help prevent this from
happening, you can set a user preference for WinStudio to warn developers about this type of
situation.

• If Source Control is enabled for a configuration, Form Control also checks objects in to source control
when you check objects in to the master databases.

Infor Mongoose Core Development Guide | 44

Form Control

Tips

• If you cannot check out an object because it is locked, Form Control displays the user ID of the
developer who has the object checked out.

• When you check out a form, you can see a list of all the associated global objects and can check
out all or some of those objects at the same time.

For more information, see Checking Out Forms.

• When you check out a form, you can also check out the form template associated with it.

For more information, see Checking Out Forms.

• You can check out global objects independently, regardless of the forms they are associated with.

For more information, see Checking Out Global Objects.

• You can display a report of all the objects you have checked out.

For more information, see Displaying the Current Status of Forms and Global Objects.

• If you want to examine or test objects, you can get a copy of the current version of the object without
checking it out. In this way, many developers can get the same object, even if the object is locked
to a developer. If changes are made, they are not permanent because they cannot be checked in.

• You can archive a form or global object. Archiving deletes the object from both the master and
run-time databases and moves it to the corresponding archive database.

For more information, see Archiving Forms or Archiving Global Objects.

Form Control Tasks
Form Control is essentially a file and version-control manager. You can use it to control who can work
on certain forms or global objects in a development environment. Form Control is limited to these basic
tasks:

• Checking objects out on page 45
• Checking objects in on page 47
• Getting objects on page 47
• Unlocking objects on page 48
• Archiving objects on page 48
• Restoring objects on page 49
• Displaying status of objects

Checking Out Objects
Checking out a form or global object allows you make changes to the object in WinStudio, without
having to worry about others overwriting your changes. When you check out an object, Form Control
locks the object so that no one else can make permanent changes to it until you check it back in or
unlock it.

You can check out an object only if no one else already has it checked out.

Infor Mongoose Core Development Guide | 45

Form Control

You can check out these objects:

• Forms, with or without their associated templates and/or global objects
• Global objects, regardless of whether they are associated with forms

During a checkout procedure, Form Control performs these tasks:

• Verifies that no one else has the object checked out

If an object is checked out already, the system displays a message identifying who has it checked
out. You cannot check out the object until the other developer checks it in.

• Warns if device types exist for a form but are not synchronized between databases. For more
information, see Utilities Tab.

• Copies the object from the master database to the appropriate run-time database and locks it in the
master database

That is, the LockBy column contained in the forms or templates database is set to your user ID,
indicating that you have the item checked out. WinStudio prevents other developers from checking
out or saving changes to the vendor default version of any objects that you have checked out.

Displaying and Maintaining Checked-Out Objects
You can display a list of everything you have checked out, and you can unlock or check in items from
the list. This display can include only certain types of objects, such as forms, or it can display all objects.
This list can also include objects that you have created but not yet checked in.

Once the list is displayed, you can select which objects you want to take further actions with. Those
further actions can include checking in selected (or all) objects or unlocking them without checking
them in.

Displaying Your Checked-out Objects
To display your checked-out objects:

1 In the Form Control form, select the My Checked Out Objects tab.

2 Click Display List.

In the Checked Out Objects pane, all the objects you have checked out are listed. The values, if
any, for each object, both in the master and run-time databases, are displayed along with the name
and type of each object.

Note: This display does not include any template objects you might have checked out. Forms and
global objects that you have created are displayed in this list only if you selected Enforce strict
locking of forms and objects in the user settings, and you select Include Newly Created on this
tab.

Infor Mongoose Core Development Guide | 46

Form Control

Checking In Objects
Checking in a form or global object replaces the original version in the master database with the edited
version from the run-time database. This action effectively makes the changed object the official current
version.

You can check in an object only if one of these situations is true:

• You have the object checked out.
• The object is new and does not exist in the master database.

You can check in these objects:

• Forms, with or without their associated templates and/or global objects.
Note: To check in associated templates and/or global objects, you must have those objects checked
out as well.

• Global objects, regardless of whether they are associated with forms.

During a check-in operation, Form Control performs these tasks:

• Verifies that any objects you are trying to check in were checked out to you, or that the objects are
new and do not exist in the master databases.

• Copies the objects from the run-time databases to the appropriate master databases.
• If your system is integrated with a source control system, checks the objects into source control.

Following check-in, Form Control displays a dialog box that indicates any generated files that were
not checked in or added to source control.

• Unlocks the objects in both the master and run-time environments.

That is, the LockBy column contained in the form and templates databases is set to an empty string,
indicating that no one has the item checked out.

Getting Objects
Getting a global object allows you to retrieve a copy of the object without putting a lock on it or formally
checking it out. Getting an object that no one has checked out enables several people to work with it
at once, but no changes can be made permanent without actually checking out the object. So, typically,
you would get an object (as opposed to checking it out) only when you want to make changes of an
experimental nature without worrying about the changes becoming permanent.

Note: Both getting and checking out an object overwrite any existing copies in the run-time database
with the version currently in the master database. This means that you cannot make changes made
to a "get" version permanent, as you cannot check in a "get" version, and any changes you make are
overwritten when you check it out.

You can get these objects:

• Forms, with or without their associated templates and/or global objects
• Global objects, regardless of whether or not they are associated with forms

During a get operation, Form Control performs these tasks:

Infor Mongoose Core Development Guide | 47

Form Control

• Verifies that no one has the object checked out

If an object is checked out by someone other than you, you cannot get it. (The Execute Action
button is disabled in this case.)

Caution: If the object is already checked out to you, you can get the object, but doing so overwrites
whatever changes you have made to the object since checking it out. In effect, this reverts the
object to the state it was in when you checked it out.

• Copies the object from the master database to the appropriate run-time database.

Unlocking Objects
Unlocking an object effectively reverts it to the state it had before you checked it out. If you are using
a source control system, this also undoes the checkout for source control. This is typically most useful
when you have made changes, and then you decide you do not want to keep them.

Note: You can unlock objects that you have previously checked out and objects that others have
checked out. Other developers can also unlock objects that you have checked out.

You can unlock these objects:

• Forms, with or without their associated templates and/or global objects.
• Global objects, regardless of whether they are associated with forms.

During an unlocking operation, Form Control unlocks the objects in both the master and run-time
environments. The LockBy column contained in the form and templates databases is set to an empty
string, indicating that no one has the item checked out.

Archiving Objects
Archiving a form or object removes it from the active development environment and places it in a special
archive database. Generally, you archive objects only when you are no longer using them but want to
keep copies for reference or possible later restoration.

You can archive objects only if they are not checked out by anyone.

You can archive these objects:

• Forms, with or without their associated templates and/or global objects
• Global objects, regardless of whether or not they are associated with forms

During an archive operation, Form Control performs these tasks:

• Moves the object to the appropriate archive form or templates database
• Deletes the object from the master and run-time databases

Infor Mongoose Core Development Guide | 48

Form Control

Restoring Objects
Restoring a form or object retrieves it from the archive database and places it back in the appropriate
master database.

You can restore only objects that have been previously archived.

You can restore these objects:

• Forms, with or without their associated templates and/or global objects
• Global objects, regardless of whether they are associated with forms

During a restore operation, Form Control performs these tasks:

• Retrieves the object from the appropriate archive form or form templates database
• Copies the object to the appropriate master database

Infor Mongoose Core Development Guide | 49

Form Control

Chapter 4: Application Events

About the Application Event System
The application event system is a powerful and flexible set of tools that is designed to help extend and
customize how the system works. You can use these tools to define and monitor application events
across the system, rather than being limited to a single form.

The application event system is extremely powerful and flexible. However, for some non-developer
users, the application event system can be overwhelming at first. To help you with the learning curve,
Infor provides a New Workflow Wizard, which is designed to step you through the process of creating
simple workflows using the application event system.

Some Mongoose-based applications also include a Workflow Event Handler Activation form to help
non-developers create simple application event system workflows. This form provides access to a set
of predefined workflow event handlers. These handlers are ready-to-use. In most cases, you must
define the user names or email addresses of the people who must be notified when a certain event
happens, and activate the handler.

Basic Components of the Application Event System
The application event system consists of interrelated components:

• Application events are uniquely named incidents that can occur during the use of an application.
These events can have multiple triggers and can be generated by user actions, conditions in a
database, other events, or other situations.

• Event handlers consist of data that specifies:
• The application events to which they are to respond
• Any conditions, situations, or attributes that determine when and why each handler executes
• One or more event actions to take place during the handler’s execution

Each application event can have multiple handlers, but each handler can be associated with only
one application event.

• Event actions consist of instructions that specify the individual tasks or bits of work that are performed
by the event handler. Each event handler must have at least one action and can have multiple
actions.

This diagram shows a possible set of application events, event handlers, and event actions:

Infor Mongoose Core Development Guide | 50

Application Events

You want the system to automatically notify you whenever someone adds a customer order to the
system and to request your approval if the order is $1000 or more.

This diagram shows the application event and associated handlers for this scenario:

The application event gets triggered whenever someone creates a new customer order. The application
event that tells the event handler to run are set up as part of the event handler definition. The event
action is a notification that an order has been placed and an approval request for orders of $1000 or
more.

A single event handler is required, but that event handler requires these event actions to complete all
the requirements:

• Event Action 1: The system checks the amount of the order and determine what additional actions
are required based on the amount.
• If the amount is $1000 or more, go to Event Action 2.
• If the order is less than $1000, go to Event Action 3.

• Event Action 2: The system generates a prompt message to the manager that requests for an
approval for the order. The system then waits until the manager responds.
• If the manager approves the order, the system then proceeds to the next action.

Infor Mongoose Core Development Guide | 51

Application Events

• If the manager disapproves the order, the event handler fails and no further action is taken.

• Event Action 3: The system sends a message to the inbox with a notification to let the manager
know that the order has been completed.

Advantages of the Application Event System
Application events and event handlers are tagged at the time of their creation with a special identifier
(Access As) that prevents them from being modified or deleted by other development organizations.
This identifier also prevents your custom events and handlers from being overwritten when Infor or
another developer issues updates to their events and handlers.

The application event system provides an infrastructure that allows both the framework and application
code to generate application events, and for developers and system administrators to create handlers
for those application events. Event handlers can augment or replace the default framework or application
behavior associated with the application event. You can design event handlers so that maximal work
can be performed without requiring new procedural code.

Event handlers are defined using metadata. Metadata refers to the practice of using uncompiled code
and information about data formats that are interpreted during run time, rather than compiled code or
procedural code.

The application event system offers several significant advantages over hard-coded systems:

• The application event system provides the power and flexibility to customize the way the system
performs without modifying the basic code. Therefore, business processes are easier to modify.
You can modify application processes and policies without directly modifying the application code
and without writing any procedural code. This means that the amount of procedural code that is
required to implement functionality can be greatly reduced or even eliminated altogether.

• You can use your event handlers with events created by others to gain control of the application
flow and take appropriate action, rather than being forced to call into the application using APIs.

• Because event handlers are defined using metadata, there is no upgrade problem, and no collision
problem if other developers also have event handlers for the same event.

Example: Using the Application Event System
These examples offer illustrations of how to use the application event system, including explanations
of how this can benefit you.

Example 1: Sending a notification when a record is added

Scenario: You have a sales manager who wants to be notified whenever someone adds a new customer
to the system.

Solution: You can use the application event system to automate compliance with this request. You can
set up an application event that is generated whenever anyone adds a new customer into the system,

Infor Mongoose Core Development Guide | 52

Application Events

and use event handlers and actions to automatically generate a notification that is sent to the sales
manager.

Example 2: Getting approval for a credit limit change

Scenario: Your company requires that any change to a customer’s credit limit be approved by a
designated credit manager.

Solution: You can use the application event system to automatically send the credit manager a message
requesting approval of the change. To speed up the process, you can also send an email to the credit
manager that contains links that the manager can click to approve or deny the request. When the credit
manager responds to the message and approves the request, the system can then automatically
change the credit limit amount.

Example 3: Complex approval of a purchase order status change

Scenario: Your company has a business process in place that:

• Requests approval from a purchasing manager when the status of any purchase order (PO) is
changed to Ordered

• Requests majority approval from a group of higher level managers when the total cost of the PO
exceeds a certain amount and whether the order should be sent to the vendor

• Requests unanimous approval from a group of top-level directors when the total cost of the PO
exceeds a higher amount

• Approves and Completes the transaction when the total cost of the PO is approved at all the required
levels

Solution: You can use application events and handlers to automate this entire process. You can evaluate
the PO at each step, request only the necessary approvals, and complete the transaction upon approval.

Example 4: Automatically shipping a customer order

Scenario: You have a system that, by default, requires someone to manually set the system to ship a
customer order line when the status of the line is set to Filled.

Solution: You can use the application event system to automatically set the order to ship as soon as
the status is set to Filled.

Using the Application Event System for Document (File)
Attachments
The application event system provides two basic means to work with document attachments. You can
perform these tasks:

• Include documents attached to records when initiating those records for processing
• Attach, link, or detach documents to records during the course of processing

Infor Mongoose Core Development Guide | 53

Application Events

Including Documents Attached to Records

If you plan to use application events and event handlers with collections and records that can already
have document attachments, and you want to include those attached documents in whatever action
is taking place through the event handling, you can use the Attach event action parameter in conjunction
with a Notify, Prompt, or Send Email event action. This option allows you to include all documents,
only internal documents, all document other than internal documents, or specified individual documents
from the record being processed. You can also exclude all document attachments from an event handler
action.

With the application event system, you can update or detach documents that are already attached to
records and included in such actions. For more information about how to use the fields, see the help
on the Event Action Attach form.

Processing Document Attachments

You can use the application event system to attach, link, update, or detach documents during the
processing of an event handler. For these types of actions, use the Attach event action type as part of
the handler sequence.

Working with Application Event System
Application events are generated or fired in response to an action or condition that occurs in the system.
When the application event is generated, it can execute one or more event handlers with the event
actions associated with each event handler.

Handling Application Events
An application event requires an event handler to do an action in response. Otherwise, the application
event serves no practical purpose. If there is no handler for an application event, the event does nothing
when generated.

Note: Some events can exist without an event handler. Infor includes framework events as part of the
system. Infor does not include handlers for these events. These events were created to provide events
that other developers can use with their own custom event handlers.

When application events can be generated

An application event can be generated when:

• A system user performs an action on a given form or when a business process is involved
• A database calculation is performed that results a certain value
• Another event results in generating this application event
• An amount of time has passed

Infor Mongoose Core Development Guide | 54

Application Events

These situations and conditions can fire application events:

• A sales representative saves a record in the Customers form
• A manager changes the credit hold status of a customer
• A factory manager adds a new item to the list of manufactured items in that facility
• The first day of each month arrives, for example, an application event can be used to generate a

monthly report
• The quantity-on-hand of an item is less than zero

Where application events can be generated

With the application event system, application events can be generated from any tier.

• In the client tier, the application event can be generated by using a form that has a form event
handler with a Generate Application Event response type.

• In the middle tier, the application event can be generated by invoking an appropriate .NET method.
• In the database tier, the application event can be generated by using an appropriate stored procedure.
• In any tier, an application event can generate another application event by using the Generate

Event action type.

Controlling the Sequence of Event Handlers and Actions
These settings control the order in which event handlers and their actions execute.

Handler sequence number

Each event handler has a handler sequence number. Handlers execute in the order of their sequence
numbers. To modify the flow and change handler sequence order, use the Keep With and Chronology
options on the Event Handlers form or the Event Handler Sequence form.

Action sequence number

The event actions associated with each event handler have their own action sequence numbers. These
numbers execute in numeric order, unless:

• You use the Initial Action option on the Event Handlers form to designate that an action should
execute first

• You use event action types to modify the flow

Restricting Which Handlers Run
There may be times when you want or need to disable the event handlers created by one or more
development organizations, including yours, at least temporarily. This occurs typically when you are
troubleshooting problems with the application event system.

You can disable event handlers by using the Event Handlers form or the Session Access As form.

Infor Mongoose Core Development Guide | 55

Application Events

• To disable event handlers temporarily, on Event Handlers form, clear the Active check box.

Note: You cannot use this technique to disable Core event handlers.

• To disable (or enable) all the event handlers that are created by a developing organization all at
once, use the Session Access As form.

Note: To accomplish the same thing for individual handlers with your Access As value, open the
Event Handlers form. For each event handler that you do not want to include in testing or debugging,
clear the Active check box.

For example, a customer has a problem that he suspects is caused by something that he did in the
event system, but he is not sure what. He places a call to Infor Technical Support.

The technical support representative verifies that the customer’s custom event handlers are not causing
the problem. The technical support representative asks the customer to temporarily disable all custom
event handlers so that the operation can be tested with only standard functionality in place. The technical
support representative instructs the customer to use the Session Access As form to perform either
of these actions:

• In the Include Access As field, specify Core,BaseAppAccessAs, where BaseAppAccessAs is
the Access As identifier associated with the base application installed on the system.
Note: This option allows only the Infor framework and base application event handlers to execute.
Custom event handlers that are created by the end-customer do not execute.

• Leave the Exclude Access As field blank, and select the Exclude Blank Access As check box.
Note: This option allows all Infor and business partners event handlers to operate. Only the
customer’s event handlers are ignored.

To disable or enable event handlers using the Session Access As form, use any of these options:

• In the Include Access As field, specify the Access As identifiers for event handlers that are
recognized during this session.
Note: To include multiple Access As identifiers, specify them and separate only by commas (no
spaces).

If this field is left blank, the system can recognize and execute all event handlers.

• In the Exclude Access As field, specify the Access As identifiers for event handlers that are ignored
during this session.
Note: To exclude multiple Access As identifiers, specify them and separate only by commas (no
spaces).

If this field is left blank, the system can recognize and execute all event handlers. The exception
occurs only if the Exclude Blank Access As check box is selected. In this case, all event handlers
are recognized except event handlers for which the Access As identifier is null (blank).

• Select the Exclude Blank Access As check box to exclude the event handlers that have a blank
Access As identifier.

About Synchronicity
With respect to the application event system, synchronicity refers to the ability or inability of event
handlers to run independently from other event handlers. Application events are synchronous when

Infor Mongoose Core Development Guide | 56

Application Events

they must execute their handlers in a specific order. Application events are asynchronous when they
can execute their handlers independently of other handlers.

A synchronous event handler is one that must be complete before the system continues to the next
event handler in a sequence. For the entire application event to be handled successfully, all synchronous
handlers in the sequence must complete successfully. The exception to this rule is that, if one event
handler fails, other than for an illegal operation, and the system is set to ignore failures for that handler,
the system can continue to the next synchronous event handler. Otherwise, the system returns a failure
error, and no more event handlers in the sequence execute.

By contrast, an asynchronous event handler runs independently of other event handlers.

Synchronous events

Unless the application event is designed to suspend, the expectation is that the application event is
completed synchronously. Therefore, synchronous event handlers execute in sequence in the same
thread that generated it and block that thread until they are all executed or until a handler exits with a
failure status.

Application events are synchronous when they are generated by:

• Framework events
• Calling the FireApplicationEvent() .NET method with the Synchronous parameter set to True
• Using a form event handler with a Generate Application Event response type and the

Synchronous option selected
• Using a Generate Event event action type with the Synchronous parameter set to True

Asynchronous events

This application event runs in a different thread than the one that posted it, usually on an application
(utility) server. In this case, the application event does not block the generating thread, running
independently of it. As soon as an acknowledgment is received that the event was successfully queued,
the thread that generated the application event continues.

Application events are asynchronous when they are generated by:

• Calling the FireApplicationEvent() .NET method with the Synchronous parameter set to False
• Calling the dbo.FireEventSp or dbo.PostEventSp stored procedure
• Using a form event handler with a Generate Application Event response type and the

Synchronous option cleared
• Using a Generate Event event action type with the Synchronous parameter set to False

Event handlers

Event handlers can be designated as synchronous or asynchronous at the time they are created, using
the Synchronous check box on the Event Handlers form.

Any event, either synchronous or asynchronous, can execute an asynchronous event handler when
execution reaches an event handler designated as an asynchronous event handler; that is, for which
the Synchronous check box is cleared. At this point:

• The system sends the asynchronous event handler to the event handler queue.

Infor Mongoose Core Development Guide | 57

Application Events

Note: The system performs queueing by means of the PostEventHandlerSp stored procedure, to
which it passes the configuration name from the event state.

• If queueing was successful, the application event's thread continues to the next event handler or,
if no subsequent handlers are defined, completes the event.

• If queueing was unsuccessful, the application event stops with a failure condition.

About Suspension
Suspension occurs when a requested operation is sent to the application event system for completion
at a later time. This occurs when the event handler has the Suspend option selected and contains an
adjourning action.

Suspension is possible only with certain framework events. You cannot create custom events that can
be suspended. Currently, these application events can be suspended:

• IdoOnItemInsert
• IdoOnItemUpdate
• IdoOnItemDelete

Suspension occurs when the system generates an application event that:

• Is one of these framework events that can be suspended
• Has the Suspend check box selected (on the form) for at least one handler that applies to the

generated event’s object and initiator

When an application event is suspended

When both conditions are met, WinStudio passes control of the requested update (insertion, update,
or deletion) to the application event system. The application event system then ensures that the event
handlers can all execute successfully before actually committing the system and the data to execute
the event actions.

There are two stages: suspend-validating stage and suspend-committing stage.

When an application event is not suspended

When an application event that can be suspended is not suspended (that is, no event handler for that
application event that applies to that event’s object and initiator has the Suspend check box selected),
the system executes the application event using this process:

1 The system performs a database update.
2 The application event system executes all effective event handlers, returning either success or

failure.
3 The system handles failures as errors and exits the application event.

Note: Each insertion/update/deletion request in the process, which could be from an external XML
request or from a Save action in WinStudio, participates in the overall transaction. In this case, all
complete or nothing completes. So, each handler chain (the same chain executes for each insertion,
update, or deletion in the group) also participates in that overall transaction. A failure of any of those
handler chains results in the entire transaction being rolled back.

Infor Mongoose Core Development Guide | 58

Application Events

About Suspension Stages
Suspension of application events occurs in these stages:

Suspend-validating stage

When an application event is suspended, in what is known as suspend-validating stage, the system:

1 Begins a database transaction.
2 Performs an update to the database to validate pertinent data against any SQL constraints or triggers.
3 Validates the data by running all effective event handlers that are synchronous and not suspended

in the current transaction.

This process involves both application and event system changes:

• At the beginning of this process, in a separate event transaction, the system copies the event
handler to a new revision, if necessary.

The reason for this is that both the suspend-validating mode and the suspend-committing mode
must use the same metadata. However, the validating transaction will be rolled back, and the
master transaction may be rolled back. So, the current event handler revision must be available,
in case someone edits the handlers between execution of the two modes.

• During this process, a non-output event parameter named Suspend_ValidatingMode with a
value of 1 is made available to handlers.

You can test this on any synchronous, non-suspended handlers that you do not want to execute
at this time (perhaps because its actions would irreversibly affect something not controlled by
our database transaction), using the expression CONDITION(
E(Suspend_ValidatingMode)<>1).

Note: At this point, the application event system treats any failure as an error and exits the
execution of the application event.

4 Rolls back the transaction
5 Places a task on the event queue to run all involved handlers in suspend-committing mode.

If the collection update is rolled back due to a later error, this suspension is also rolled back with it
and results in a state identical to one in which this update was never requested.

When the application event service picks up the queued event, it knows that a suspension is in
effect by checking the EventQueue.Suspend attribute.

6 The system marks the record involved in the update/deletion request to have the InWorkflow property
set to 1. This prevents any user from attempting another change to the suspended record. Note
that suspended insertions do not reach the database at all unless and until the suspended event
finishes successfully.
Note: Suspended records in a workflow are indicated as such by a purple icon in the status indicator
column of a grid.

7 The thread in which the event was generated continues as if the change request succeeded. This
occurs even if the thread originated from an event handler executing an UpdateCollection or
ExecuteIDORequest type event action. In other words, suspension affects only one level of event
execution.

Infor Mongoose Core Development Guide | 59

Application Events

Suspend-committing stage

Once the suspended event completes the suspend-validating mode successfully and is placed on the
event queue, the system processes the event using these rules. This is known as the suspend-committing
stage.

• Any failure or error condition prevents further event handlers to execute and prevents the standard
processing (requesting for insertion, update, or deletion) to occur. However, the InWorkflow attribute
is cleared.

• After each event handler finishes successfully, execution proceeds to the next event handler.
• The system queues any asynchronous event handler and execution proceeds to the next event

handler.
• When the last event handler is finished, or is queued successfully, the standard processing is

committed and the application event is finished.
Note: For an update request, the InWorkflow attribute is cleared.

About payload
An application event that can be suspended carries a payload that represents and allows handlers to
access and modify the requested change (insertion, update, or deletion).

Each named property value that forms part of the change is passed into and out of the application
event system as a parameter with a name of the Row.Property form, where Property is the name
of the IDO property. Modified property values are accompanied by another parameter with a name of
the Row.Property.Modified form and a value of 1.

During notify and prompt actions, these parameters are:

• Temporarily converted to event variables, which overrides any value that may have been set in
preceding actions or specified on the Event Variable Groups form

• Available for display (and update, for prompts) on the Variables tab of the Inbox form (and for
display at the end of an external email prompt)

• Then converted back to parameters for subsequent actions

During other actions, such as Set Values, these parameters can be modified to affect the result of the
change when it is applied to the database. This can be done by using this syntax:

• SETPROPVALUES("Property"=expression): If the new value is different than the original
framework event parameter received by the event, the PROPERTYMODIFIED(PropertyName)
framework event parameter is also set to True automatically.

• SETPARMVALUES(Row.Property=expression, Row.Property.Modified="1"): Note that
you should also indicate to the framework that the property is now modified, as shown.

About Adjournment and Resumption
Some chains of event actions must be temporarily stopped while waiting for some condition to be met.
For example, a customer order needs a manager’s approval before the order can be entered into the

Infor Mongoose Core Development Guide | 60

Application Events

system. In this case, the system temporarily halts the execution of the event handler chain until the
manager responds with an approval. This event operation is known as adjournment.

Adjourning actions must wait for an external stimulus before the event handler can proceed with the
next action. An event handler that contains such an action must be either asynchronous or part of a
framework event that can be suspended and is marked to suspend.

When execution reaches an adjourning action, the event handler state is set to retest or time out at a
specified time. At this point, the application event becomes an adjourned event.

The event service then processes the application event at the next opportunity after the Time Out or
Retest time, or both. This event operation is called resumption.

About Event Handler Status
Each event handler can exit with a Success or Failure status. When an event handler fails, if it is not
set to ignore failures, and if it has not attempted an illegal operation, the system can retry the event
handler’s actions.

Success

An event handler exits with a Success status only when it reaches a Finish event action or completes
all event actions successfully without reaching a Fail event action.

Failure

An event handler exits with a Failure status when it does any of these:

• Reaches a Fail event action
• Attempts an illegal operation
• Experiences an unexpected failure of an event action or something launched by an event action

When a failure occurs:

• In the Result field of the Event Handler Status form, an appropriate error message is displayed,
which includes an error message passed from a failing stored procedure in @Infobar message type
parameter, where applicable.

• On the Actions tab of the Event Handler Status form, the Times Failed counter for the current
event action state is incremented.

• On the Handlers tab of the Event Handler Status form, the event handler state's Last Activity
Date is set to the date and time of the failure.

• On the Variables tab of the Event Handler Status form, any event variables are maintained at their
current values for inspection.

Ignoring Failures
By default, if any synchronous event handler reports a failure, the system skips any remaining event
handlers for that application event and exits with a Failure status.

Infor Mongoose Core Development Guide | 61

Application Events

To override this default behavior, on the Event Handlers form, select the Ignore Failure check box.

If you select this option, the event handler is always treated as successful unless an illegal operation
is deliberately attempted. However, in the Status field of the Event Handler Status form, the status
remains Failure, even though the Any Handlers Failed check box is cleared on the Event Status
form.

This table shows what conditions can result in failures for various action types and whether the failure
can be ignored.

Result
(Event Sta-
tus)

Ignore Failure
option select-
ed?

ConditionAction type for the
current event action

FailureN/AIllegal operation: Any attempt to set a
non-output event parameter

Set Values

FailureN/AIllegal operation: Any attempt to use
an action type that is not supported on
the current tier

Some

FailureN/AIllegal operation: Syntax error in param-
eter

Any

FailureN/AIllegal operation: Any attempt to gener-
ate a framework event

Generate Event

FailureNoUnexpected errorAny

SuccessYesUnexpected errorAny

A Fail action whose condition evaluates to True on an event handler for which the Ignore Failure option
is selected is equivalent to a Finish action.

An asynchronous event handler's failure does not affect any remaining event handlers for that event.
However, setting the Ignore Failure option in this case avoids affecting the AnyHandlersFailed()
attribute of that event, unless the failure was caused by deliberately attempting an illegal operation, as
shown in the table.

Retrying Event Handlers
On the Event Status and Event Handler Status forms, you can retry a failed event handler, if it is
retryable. Whether a handler can be retried is determined by the cause of the failure and whether the
event handler is marked as transactional, as shown here:

Event Vari-
ables

Retry pointRetryableHandler
transactional

Event trans-
actional

Cause of Fail-
ure

N/AN/ANoN/AN/AIllegal opera-
tion

N/AN/ANoN/AYesAny legal oper-
ation

Infor Mongoose Core Development Guide | 62

Application Events

Event Vari-
ables

Retry pointRetryableHandler
transactional

Event trans-
actional

Cause of Fail-
ure

Re-initializedInitialActionYesYesNoAny legal oper-
ation

Re-initializedInitialActionYesNoNoUnconditional
Fail Event ac-
tion

MaintainedCurrentActionYesNoNoConditional
Fail Event ac-
tion

MaintainedCurrentActionYesNoNoUnexpected
error

When retrying a single handler, whether the handler runs synchronously or asynchronously depends
on the parameter passed to the API, not the handler’s definition. When retrying an event, the handlers
are run as shown in this table:

Failed Asynch HandlerFailed Synch Handler

AsynchronousSynchronousRestarted synchronously

AsynchronousAsynchronousRestarted asynchronously

An event can have a synchronous handler that is not retryable, but it still retries any asynchronous
handlers that can be retried. In this case, any synchronous handlers that will come after the failed
handler will not be run.

The Event or EventHandler Result must be cleared when retrying the handler. However, the previous
handler result is saved in a handler variable called PreviousResult, and the event results are saved in
an event parameter also called PreviousResult.

About Transactions
A transactional event is an application event or set of event handlers in which all must complete
successfully before any data is committed in the system. If any handler fails, then the system rolls back
or reverts all data to its initial state.

If the transactional event contains any adjourning event actions, the system modifies this behavior
somewhat: Any actions taken up to the first adjournment, between each resumption of an adjournment
and the beginning of the next adjournment, and after the last resumption, are each committed separately.

The system treats any asynchronous event handlers as if they belong to an asynchronously generated
non-transactional event. In other words, because they are outside the synchronous flow, these event
handlers are not treated as part of the transaction.

Infor Mongoose Core Development Guide | 63

Application Events

Transactions with synchronous events

An event generated synchronously without the Transactional check box selected on the Event Handlers
form either:

• Runs in the current transaction state of the firing thread, if no lower-level transactioning is specified
• Handles transactions at the event handler or event action level, as explained in these points:

• In the middle tier, any execution methods for database-related event actions must enlist in an
existing transaction or create a new one.

To include the entire event in a single transaction, call the FireApplicationEvent method from a
hand-coded IDO method that is marked Transactional in the IDO metadata. In this case, the
execution methods for the database-related event action enlist in the transaction created by the
IDO Runtime for that transactional IDO method.

When the FireApplicationEvent method is called from a hand-coded IDO method that is not
marked Transactional and whose caller is not in a transaction state, each event action execution
method creates a new transaction, which is rolled back in case of failure, except when the
containing event handler is marked Transactional. Changes to event system state data are
performed in a separate connection (except in suspend-validating mode), so they survive any
rollback of the encompassing or wrapping transactions.

• The client is not permitted to control transactions that span form event handler calls. Client- tier
event-firing requests are passed directly on to the MGCore.Events.FireEvent IDO method.

A failure of a synchronous event returns an error condition to the firing thread. For framework events,
this causes the entire current transaction to be rolled back. For application events, whatever generated
the event (.NET method or VB.NET script) is responsible for trapping the error condition, accomplishing
a rollback of the current transaction, and throwing execution to an appropriate recovery point in or out
of that code.

Transactional event handlers

An event handler marked Transactional is wrapped in a new transaction when executed from the
middle tier, if no encompassing transaction is active at the trigger point of the outermost enclosing
event.

This event handler cannot contain any adjourning event action types (for example, Prompt, Wait, or
Sleep), but it can be marked Asynchronous itself. If this event handler ends in a failure, the wrapping
transaction is rolled back (assuming it was created).

Non-transactional event handlers

An application event that is generated asynchronously without the Transactional setting does not run
in a transaction state. Event handlers that are not marked Transactional, for a synchronous event
generated from a middle-tier non-transactional custom IDO method, are handled this way:

• An application event can be generated asynchronously with a Transactional setting that indicates
that a new transaction has begun and the entire database-related effects of its synchronous event
handlers are committed if they all succeed or rolled back if any fail.

• Any asynchronous event handlers are treated as if they belong to an asynchronously generated
non-transactional event.

Infor Mongoose Core Development Guide | 64

Application Events

Rolling Back Transactions
These conditions cause the system to set the Transactional setting on a new event state row:

• FireApplicationEvent() detects an enclosing transaction.
• FireEventSp, FireApplicationEvent(), PostEventSp, or PostEvent() receives a Transactional setting.

This event state setting signals the system administrator that when this event state is finished and not
rolled back, everything happened that was expected to happen.

In a synchronous multi-event situation, to encode the proper information in the Rolled Back setting,
an enclosing transaction that contains one or more FireApplicationEvent() calls must:

1 Once, before calling FireApplicationEvent(), call EventBeginTransactionSp or
EventBeginTransaction().

This uses a separate transaction to clear a storage area to record the row pointers of the event state
rows to be created and returns a transaction identifier to be passed to FireApplicationEvent().

2 Pass that transaction identifier to FireApplicationEvent().

In a separate transaction, this records the row pointer of the new event state row.

3 Upon rolling back or committing the transaction, call EventEndTransactionSp or
EventEndTransaction() and pass the transaction identifier and whether a commit or rollback is
performed.

This uses a separate transaction to set the Rolled Back setting on the stored event state rows (if
rolling back), and clears the storage area.

If this is neglected, the system administrator cannot determine why database actions that appear to
have finished successfully according to the status forms are not reflected in the database.

In asynchronous situations and when a failure is detected by the event system, the Rolled Back setting
for the failing transactional event is set by the event system.

Passing Parameters to an Asynchronous Event
Sample code:

DECLARE @EventParmId AS UNIQUEIDENTIFIER = NEWID()
EXEC InsertEventInputParameterSp @MyEventParmId, 'Parameter1', @Variable1
EXEC InsertEventInputParameterSp @MyEventParmId, 'Parameter2', @Variable2
EXEC InsertEventInputParameterSp @MyEventParmId, 'OutParameter3', NULL,
1
DECLARE @SessionID AS UNIQUEIDENTIFIER = dbo.SessionIDSp()
DECLARE @Unused AS BIT = 0
DECLARE @Result EventResultType
DECLARE @Infobar InfobarType
EXEC dbo.FireEventSp
 @EventName = 'MyEvent',
 @ConfigName = 'MyConfiguration',
 @Initiator = 'MyInititator',
 @SessionID = @SessionID,
 @EventParmId = @MyEventParmId,

Infor Mongoose Core Development Guide | 65

Application Events

 @EventTrxId = NULL,
 @Transactional = 0,
 @GeneratingEventActionStateRowPointer = NULL,
 @AnyHandlersFailed = @Unused OUTPUT,
 @Result = @Result OUTPUT,
 @Infobar = @Infobar OUTPUT

Calling a Synchronous Event within a Transaction and Handling
Failure
1 Determine the current site.

2 Name a configuration, by convention:

DECLARE @Site SiteType
SELECT @Site = site FROM parms

3 Determine the current SessionId:

DECLARE @SessionId RowPointerType
SET @SessionId = dbo.SessionIdSp()

4 Add the procedure code:

BEGIN TRANSACTION
UPDATE coitem
SET due_date = dbo.CalcDueDate(@Parm1, @Parm2)
WHERE coitem.co_num = @CoNum
AND coitem.co_line = @CoLine
AND coitem.co_release = @CoRelease

SET @MyEventParmId = NEWID()
EXEC InsertEventInputParameterSp @MyEventParmId, 'CoNum', @CoNum
EXEC InsertEventInputParameterSp @MyEventParmId, 'CoLine', @CoLine
EXEC InsertEventInputParameterSp @MyEventParmId, 'CoRelease', @CoRelease

DECLARE
@anyHandlersFailed [tinyint],
@result [nvarchar](4000),
@Infobar [nvarchar](4000)

EXEC @Severity = FireEventSp
@eventName = SetCoitemDueDate',
@configName = 'SyteLine',
@sessionID = @SessionID,
@eventTrxId = null,
@eventParmId = @MyEventParmID OUTPUT,
@transactional = 0,
@anyHandlersFailed = @anyHandlersFailed output,
@result = @result output,
@Infobar = @infobar output

IF @Severity > 0

Infor Mongoose Core Development Guide | 66

Application Events

BEGIN
EXEC RaiseError @Infobar, @Severity
ROLLBACK TRANSACTION END
...
COMMIT TRANSACTION

About the Framework Event Service
The Framework Event Service is an independent process that can run on any application (utility) server.
Each instance of the Framework Event Service monitors the event queue for any number of
configurations defined locally.

For load-balancing purposes, this service safely acquires work from the database queue of each
configuration's application, so that multiple event services can run on one or multiple servers. The
event service monitors the event queue for these events and handlers:

• New events that have been queued by means of asynchronous generation methods or suspending
framework events, as found in the Queued Event table

• New event handlers that have been queued by means of the firing of asynchronous event handlers,
as found in the Queued Event Handler table

• Resuming event handlers that had been adjourned, and have now completed a Prompt, Wait, or
Sleep event action, as found in the Event Handler Status table having a value in Retest At Date
that is older than the current date and time

• Resuming event handlers that had been adjourned, and have now completed a Discover File action,
as found in the Event Handler Status table having a value in Path To Watch and no value in Last
Watched Date

• Running event handlers whose current action has timed out, as found in the Event Handler Status
table having a value in Times Out At Date that is older than the current date and time

• Active event triggers
• Continuing events that have successfully retried a previously failed handler, as found in the Event

Status table having a value in Continue After Handler Row Pointer

Administrative details

To eliminate the possibility of deadlocks when manipulating event data, a second database connection
is used for event data modifications, that is, separate from the one used by the event action execution
methods. Also, any event data modifications that do not need to be available to other processes (any
tier of any interactive user session or other event service instances) are made in memory and written
only when required.

To avoid overtaxing the application server, the Framework Event Service administrator has control
over the minimum interval for these attributes:

• RetestInterval parameter on Wait event actions
• Interval parameter on Sleep event actions
• RetestInterval attributes on event triggers

Infor Mongoose Core Development Guide | 67

Application Events

When any of these attributes is referenced, if the designer-specified value is greater than zero but
lower than the minimum interval for the Framework Event Service, the minimum value is used.

The Framework Event Service logs various levels of messages to the Infor framework Log Monitor.

Setting Up the Framework Event Service
On the Event Service tab of the Service Configuration Manager, you must individually specify each
configuration that you want to monitor.

Note: If you do not do this setup, any event handler you create that requires the event service will not
work.

For more information, including the procedure, see the online help for the Service Configuration Manager
utility.

If you want to use the IDO Runtime Development Server (IDORuntimeHost.exe) for development work,
you must also temporarily remove the dependency that the Event Service has on the IDO Runtime
service. For more information, including the procedure to do this, see the online help for WinStudio
developers.

Processing Order in the Framework Event Service
The Framework Event Service processes any queued events in "first in, first out" (FIFO) order.

Because the event service can receive a request to run something while it is executing a prior request,
all requests are queued for execution in the order requested. If the new request is only one in the queue
and the event service is not busy, the request is executed at the next polling.

When the event queue is empty, and immediately after processing each queued event or event handler,
the event service checks the Event Handler State and Event Trigger tables for any items where Retest
At time setting has arrived or passed.

The event service then checks the Event Handler State table for any items for which the timeout has
expired. This is when the Times Out At time setting has arrived or passed. The event service processes
these in order (oldest first), by using the Retest At time or Times Out At time to determine the order.

After this, the event service checks the event queue again for any incoming items.

About Event Handler Revisions
The system creates a set of event handler revisions the first time:

• The event is generated or any of its handlers executes.
• The event is generated after any of its constituent handlers or their actions has been modified.
• Any of the event’s handlers executes after any of its constituent actions has been modified.

Infor Mongoose Core Development Guide | 68

Application Events

Modifications can include additions, changes, or deletions to the handlers or actions associated with
the event or handler.

When the revision is created, the system copies all of the event's handlers and actions to a read-only
table. The event or handler then uses the data in this read-only table when executing the handlers and
actions, until a new revision is created.

Revisions are used to ensure that the metadata that is used by an application event and its handlers
and actions is not altered while the event is executed. In some cases, it can take the system a period
of time to finish executing an event's handlers, either because of the processing time involved, or
because the system is waiting for some input or response before it can continue. It is possible that
someone could make changes to the event's handlers and actions while the event is processing or
waiting, and that these changes could affect the execution of the event that is in progress.

Revisions were developed to address this kind of potential problem. When an event fires, the application
event and its handlers use the revisions that are in effect at the time they start executing until they are
finished.

Example

You are using an application event to send notices to a manager when a customer order is more than
$10,000. The manager must approve the order before it can be processed.

During a transfer of responsibilities from one manager to another, a new manager is assigned the
responsibility of approving such orders. The system administrator makes the change of notice to the
appropriate event action.

However, the original manager has a few orders pending approval. These orders continue to use the
metadata for the revision in effect at the time they were created and await that manager's approval. In
the meantime, the new manager receives notices for any subsequent orders, because the first new
order generates a new revision using the information for the new manager.

Designing and Using Application Events and Handlers
Infor has built in to the system a number of application events and/or handlers that are available for
immediate use. In addition, if you have an add-on product distributed by one of Infor’s business partners,
they may also add their own application events and handlers that you can use.

You can also design and create your own custom events and handlers to automate tasks for your
particular needs.

Note: If you are creating and using your own custom events and handlers, we recommend that you
refresh the metadata cache periodically. This process should be done after doing development work,
before testing, and after synchronizing your metadata on your system.

Infor Mongoose Core Development Guide | 69

Application Events

About the Access As Identifier
One key element of the application event system is the Access As identifier. The Access As identifier
is used to:

• Indicate who (what organization) created and owns an application event or related event system
object

• Prevent unauthorized developers from modifying or deleting event system objects that they do not
own

The Access As identifier is also used to indicate ownership and modification rights for certain IDO
metadata.

Generally, the Access As identifier falls into one of three classifications:

• Core – Indicates that the object is one that Infor created and owns. These event system objects
are used for the framework forms and operations.

• OtherName – Indicates that the object is created by and belongs to an application created either
by Infor or by one of Infor’s business partners or other authorized vendors.

• Blank – Indicates that the object was created by and belongs to the end customer.

Within WinStudio, several forms include an Access As field. On the Access As form, this field indicates
the current Access As value. This is the value assigned to any new event system objects you create.
On all other forms, this field indicates who has ownership of the pertinent object metadata, in other
words, who created and owns it.

You can only modify or delete metadata for event system objects that have the same value as on the
Access As form, in other words, application event system objects that your organization has created
and owns.

With a few exceptions (noted where applicable), you can attach your own event triggers and handlers
to event system objects owned by other organizations (that is, with a different Access As identifier than
yours), but you cannot directly modify or delete those event system objects.

About Application Events
An application event is defined as a uniquely named situation that can be triggered by:

• An action performed by somebody working in the system
• A condition that occurs while the system is running
• A certain value that is exceeded in a database record
• Another event’s handler
• Other similar occurrences

Application events can be one of these general types:

• Framework events – These are events that Infor has defined and built in to the system. They are
tagged with an Access As identifier of Core and a Framework indicator on the Events form.

These events generally fall into one of these categories:

• IDO (business process-related) events that are generated when certain IDOs are invoked.

Infor Mongoose Core Development Guide | 70

Application Events

These IDOs include IdoOnItemInsert, IdoOnLoadCollection, IdoOnInvoke, and others. You can
identify these events easily by their names, which begin with the letters Ido.

• Session events that are generated when certain session activities take place.

These include SessionOnLogin, SessionOnLogout, and SessionOnVarChanged.

• Business Object Document (BOD) events that are generated when certain BOD-related operations
occur

You can identify these events easily by their names, which begin with the letters Bod.

• Task events that are generated when certain operations are initiated by the TaskMan service

You can identify these events easily by their names, which begin with the letters Task, excluding
TaskListCheck.

These events are always synchronous and transactional. Some can be optionally suspended to
await user responses.

• Application-specific events – These are application events that typically have been created by Infor,
its business partners, and authorized vendors. They are tagged with an Access As identifier that
indicates what application or development organization they belong to, which can include Core.

• Customer-defined events – These are events that a developer in an end-customer organization has
created. They are tagged with a blank Access As identifier, which indicates that they were created
by and belong to the customer.

Creating Application Events
Application events can be created or named on these forms:

• Events
• Event Triggers
• Event Handlers

To create your own custom events to use as part of the application event system:

1 Open the Events form.

2 Verify that Filter-in-Place is off.

3 Select Actions > New.

4 Specify this information:

Event Name
Specify the name that identifies the application event in the system.

Description
Optionally, specify a functional description that identifies the application event's intended use.

5 Save your changes.

Note: You can specify the application event in the Event Name field of the Event Triggers form and
Event Handlers form. However, application events that are named on those forms are not displayed
on the Events form. If you want the application event to display on the Events form, you must name
the application event by using that form.

Infor Mongoose Core Development Guide | 71

Application Events

Modifying Application Events
You can only modify the application event's description after the application event is created and saved.
The application event name and other attributes are locked.

Note: You can only modify an application event's description if the Access As field value for the
application event is the same as the current value on the Access As form.

To modify an event description:

1 Open the Events form.

2 Select the application event that you want to modify.

3 In the Description field, modify the description text as desired.

4 Save your change.

Deleting Application Events
You can only delete an application event if the event's Access As field contains the current Access
As value, as displayed on the Access As form.

To delete an application event:

1 Open the Events form.

2 Select the application event that you want to delete.

3 Select Actions > Delete.

4 Save your changes.

About Event Triggers
An event trigger is a condition that causes an application event to fire, independent of anything that
may be happening in the user interface. The event trigger carries a set of event trigger parameters for
use when the application event fires.

An event trigger can be set to fire the application event only once, or can be set to retest for its condition
after waiting a certain amount of time since either of these situations was true:

• The trigger last successfully fired the application event.
• The trigger last tested unsuccessfully for its condition.

In both cases, you can set the interval for the event trigger to wait, both for the successful firing of the
trigger and for the unsuccessful test for the trigger conditions by using separate settings. Testing and
retesting is accomplished by means of polling; this is not a true interruptive trigger.

An event trigger carries with it the user name and configuration in effect at the time it was defined. This
data is passed on to the event state when the trigger fires the application event.

Each event trigger must contain a condition that consist one of these expressions:

• A Boolean expression

Infor Mongoose Core Development Guide | 72

Application Events

• Two non-Boolean expressions that are separated by a comparison operator

Examples

• This example causes the application event to fire when seven days have elapsed since the current
result of the database function dbo.LastEntryDate():

DATEDIFF(day, DBFUNCTION("LastEntryDate"), CURDATETIME()) > 7

• This example causes the application event to fire when the balance on a certain customer's order
is greater than $10,000:

DBFUNCTION("OrderBalance", GC(BigCustNum)) > 10000

• This example causes the application event to fire on the first day of each month:

DATEPART(day, CURDATETIME()) = 1

Note: The condition should generally involve a time operation, a database calculation, or both. This
is because time and the database are the only known factors that can undergo change from external
stimuli (that is, by the forward movement of time or by the actions of other application users, respectively).

Creating Event Triggers
A trigger is a condition that causes an application event to fire. Triggers can be based on conditions
that are created in these cases:

• By user actions, such as saving and closing a form, changing a record, and so on
• Apart from user actions, such as the passage of time or the result of a database calculation

The Event Triggers form is used to set conditions of the second type.

To create an event trigger:

1 Open the Event Triggers form.

2 Select Actions > Filter > Cancel in Place.

3 Select Actions > New .

4 In the Event Name field, select the application event for which you want to define a trigger.

Note: You cannot define a trigger for a framework event.

5 In the Trigger > Condition field, specify the condition for which the application event is to fire.

6 On the Parameters tab, specify the names and values for any event parameters for which you must
pass values to the event handlers when the event fires.

7 Set other options on this form as desired.

For more information on other form options see the online help for each field.

8 Save the form.

Infor Mongoose Core Development Guide | 73

Application Events

Retesting Triggers
When the Event Trigger > Retest At date setting becomes older than the current system clock time,
the event trigger is available to be processed by the event service. This happens when the event service
is free from processing any waiting queued events and handlers and any already-waiting triggers that
need to be tested or retested.

To process the event trigger, the system analyzes and evaluates the condition.

• If the condition evaluates to True, then the application event fires. At that point, the Retest At date
setting is set to the current time plus the amount of time set for the Trigger Reset Interval. If the
Trigger Reset Interval is set to 0 (zero), then the Active check box is cleared, which indicates that
the trigger is not to be retested.

• If the condition evaluates to False, then the Retest At date setting is set to the current time plus the
amount of time set for the Condition Retest Interval. If the Condition Retest Interval is set to 0
(zero), then the Active check box is cleared, which indicates that the trigger is not to be retested.

About Event Handlers
An event handler defines the actions to be taken upon the firing of a particular application event. Each
event handler is comprised of one or more event actions and, optionally, an initial state.

Each application event can have multiple event handlers that execute when the application event fires.
In such cases, the handler sequence number and other factors determine the order in which event
handlers are actually processed.

Creating Event Handlers
In its most basic form, an event handler consists of these parts:

• An association with a particular application event
• A handler sequence number
• One or more actions to perform when the application event is triggered

Each event handler is uniquely defined in the system by the combination of an event name and a
handler sequence number. Both of these are set on the Event Handlers form. Event handlers must
have one or more associated event actions.

To create an event handler:

1 Open the Event Handlers form.

2 Click Filter-in-Place or press F3.

3 Select Actions > New.

4 In the Event Name field, select an existing application event or specify a new event name for the
handler that you want to define.

5 Specify a description for the handler. This description is helpful when you have multiple handlers
with the same event name. This description allows you to find the appropriate handler in a list.

Infor Mongoose Core Development Guide | 74

Application Events

6 Optionally, use the Keep With and Chronology fields to control the handler sequence with respect
to other developers' handlers.

7 Save the new event handler.

8 Click Event Actions to open the Event Actions form.

9 Create the actions to be performed when this event handler is executed.

10 Save your changes.

11 Close the Event Actions form.

12 On the Event Handlers form, set the other options as desired. For information about these options,
see the online help for each option.

13 To see a graphical (diagrammatic) representation of the event handler and its actions, click Diagram.
This button opens the Event Handler Diagram form. This form allows you to edit and add event
actions to the event handler flow.

14 Save the event handler.

Note: Application events and event handlers are defined for an application database and not a particular
site. To restrict an event handler to only run at certain sites on a database, on the Event Handlers
form, specify the sites in the Applies To Sites field.

Using the Event Handler Diagram Form
Note: Event diagramming uses the Nevron Diagram for .NET tool. For more information, including
complete documentation, go to www.nevron.com.

You can use the Event Handler Diagram form for these tasks:

• View a graphical (diagrammatic) representation of an event handler and its actions.
• Access the Event Actions form to modify event actions.
• Add event actions to the flow.
• Delete event actions from the flow.
• Edit the final diagram before you copy, print, or save it.
• Copy the diagram to the Windows clipboard.
• Print the diagram.
• Save the diagram as a graphics file.

About Event Actions
An event action is defined as a unit of work to be performed during the execution of an event handler.

A single event handler can have multiple event actions, but each action is assigned to a single event
handler.

Depending on its action type, an event action can do these things:

• Evaluate and compare expressions by using the results to select which event action of its event
handler to perform next

• Affect the application event's visual state

Infor Mongoose Core Development Guide | 75

Application Events

http://www.nevron.com

• Complete the event handler
• Set event variables
• Call methods or web services
• Perform other predefined tasks

Creating Event Actions
To be useful, each event handler must have at least one event action associated with it.

An event action is defined as a unit of work to be done when the event handler executes.

To create an event action:

1 Open the Event Handlers form.

2 Create a new event handler; or, in the grid view, select the event handler for which you want to
create the action.

3 Click Event Actions.

4 To create an action for an event handler that already has actions defined, in the grid, create a new
row.

5 In the Event Actions form, specify this information:

Action Type
Select the type of action to be performed. For the list of action types and what they do, see the help
for this field.

Action Description
Specify a description for the action. This description is helpful when you have multiple actions with
the same action type. This description allows you to find the appropriate action in a list.

6 Click Edit Parameters. Based on the action type you selected, the system opens the appropriate
event action parameter form, which you can use to construct the parameters for the action type.

Note: If you are familiar with the parameters, functions, and syntax for the action parameters, you
can click Show Details to display tabs where you can manually enter the parameter information in
the text field. However, unless you are very confident in your ability to write this data from scratch
or you are pasting in data from a reliable source, and to help ensure that you use only valid
parameters, functions, and syntax, we recommend that you use the event action parameter forms,
which have been designed specifically for this purpose.

For more information about the event action parameter forms, see the online help for each form.

7 When you are finished setting up parameters in the appropriate event action parameter form, click
OK.

When you close an event action parameter form, the parameters you set up there are automatically
returned to the Event Actions form, with the correct syntax. Even so, we recommend that you verify
the syntax is error-free by clicking Check Syntax before you proceed.

8 If the action involves a variable to be used in event messages and you want to restrict how the
variable's value is treated, set those restrictions on the Variable Access tab.

9 Save your changes.

Infor Mongoose Core Development Guide | 76

Application Events

10 Close the form.

Showing Event Action Contexts
When creating event handlers that send system messages to recipients, you might want to make the
record for which the application event is generated, available to the message recipients, in context on
its form.

Example: You are setting up an event handler that generates a request for approval to a purchasing
manager every time a purchase order is created. To make it easier for the purchasing manager to view
the actual request, you can set up the message so that the manager can simply click the Show Context
button in the Inbox form. When you click this button, the new purchase order record is automatically
displayed in the Purchase Orders form.

Note: This procedure can be performed only for Notify or Prompt actions, on the Event Action Notify
or Event Action Prompt forms.

To set up a system message to display an associated record in context:

1 Create an event action for a Notify or Prompt action type.

2 On the Event Actions form, click Edit Parameters.

3 On the Event Action Notify or Event Action Prompt form, designate the name of a form in the
Filter Form field.

This argument designates the form that you want to open when the recipient clicks the Show Context
button.

This parameter enables the Show Context button when the recipient views the message.

4 Click OK.

5 On the Event Action Notify or Event Action Prompt form, designate an expression resolving to
a string involving the property on which you want that form to filter when it opens.

This expression typically takes a form similar to this:

SUBSTITUTE("propertyName = {0}", FP("propertyName"))

This statement allows the system to pass the specific record that triggered the event handler.

6 Set up the rest of the Notify or Prompt action as desired.

Setting Event Action Variables from a BOD Template
You can use the Event Action Set Variables From BOD form to set any number of variables, session
variables, and/or parameter values.

1 On a Set Values event action type, click Edit Parameters.

2 In Event Action Set Values > Values From BOD, click Edit.
3 In Event Action Set Variables From BOD > Tree View, select the node from which the value is

to be set.

Infor Mongoose Core Development Guide | 77

Application Events

The Tree View displays the template currently being used. If no template is specified, this view
displays whatever is specified for the BODXML value.

The Tree View includes several options to make it easier to work with the template for the inbound
BOD:

• Click Expand All to display the entire tree hierarchy so that you can see all nodes.
• Click Collapse All to display only the top level of the tree, hiding all nodes.

This allows you to select which nodes you actually want to view more easily.

• Click Specify Name below to Add/Rename to specify the name of an element or attribute to
either add or rename:

• To add an element, specify a name here and click Add Element.
• To add an attribute to a node, specify a name here and click Add Attribute.
• To rename an element or attribute, first, in the Tree View, select the element or attribute you

want to rename; specify the new name here, and then click Rename.

• Click Add Element to add an element node to the tree.

Before you can add the element, you must first select the node under which the node is to be
added, and then specify the name of the element to add in the Specify name below to
add/rename field.

• Click Add Attribute to add an attribute node to the tree.

Before you can add the attribute, you must first select the node under which the node is to be
added, and then specify the name of the attribute to add in the Specify name below to
add/rename field.

• Click Remove to remove a selected node from the Tree View.
• Click Rename to rename a node selected in the Tree View.

Before you can rename the node, you must first select it in the Tree View, specify the new name
in the Specify name below to add/rename field, and then click this.

4 In the Set Value section, use the As field to specify how the value is to be used:

• An event Variable
• An event Parameter
• A Session Variable

5 In the Name field, specify a name to be assigned to the value.

Optionally, you can specify a default-type value from the drop-down list. For convenience, the
application supplies several auto-name options, depending on the type selected in the As field:
Var1, Var2, and Var3 for variables; Parm1, Parm2, and Parm3 for parameters; and so on. You
are not required to use these suggested names, you can enter your own name in this field.

6 Click Save.

7 Repeat these steps to define all the variables and parameters that you require.

The XPath field indicates the XPath of a selected node within the XML hierarchy.

Infor Mongoose Core Development Guide | 78

Application Events

Registering a BOD Template
Before you can see or select a BOD template for use on the Event Action Send BOD form, you must
register the template in the application.

1 Open the Maintain BOD Templates form.

2 Specify this information:

Template Name

Specify a name to identify the template.

If you leave this field blank, the system automatically uses the name of the XML file that you
download.

Version
Specify the version number of the template.

Description
Optionally, provide a description of the template.

Active

Select this check box to make the template available for immediate use.

If you clear this check box, the template is not listed in the Templates field of the Event Action
Send BOD form.

3 Click Upload Template.

4 Browse for the XML file that contains the BOD template.

5 Click Upload.

6 Click Save.

On the Templates tab, the template is loaded and the XML code is displayed.

To clear the template view and start over, click Clear Template.

Setting up the Extraction XML Collection Action
Use the Extract XML Collection action to extract a row or a collection of rows from an XML string or
from a section of an XML string. Each row in the collection must have the same predefined set of
properties.

A collection extracted in this way is equivalent in operation to one resulting from a Load Collection
event action. This means that:

• It can be manipulated by a subsequent Update Collection action.
• On any subsequent relevant action, it can be converted back to an XML string using the XML()

function.
• On any subsequent relevant action, its rows can be repeated using the ROWS() function, and each

row's properties can be referenced using the P() or FP() functions.

Infor Mongoose Core Development Guide | 79

Application Events

This event action provides a convenient way to work with XML data without having to parse through
the tags.

To set up the action and its parameters:

1 Create an event action with the action type Extract XML Collection.

2 When you click Edit Parameters, the Event Action Extract XML Collection form is displayed.

This form has these buttons, each with an accompanying field:

Notes/CommentsBut-
ton/Field

The button opens the Event Action Select XML Template form, which allows you
to select and load the XML template to use with the XML data being extracted. You
can also type the XML template in this field manually, or paste it from another source.

An XML template is an XML fragment that has the same structure as a single row of
data in the XML from which the data is to be extracted. This XML fragment can thus
serve as a template for that row of data.

The field displays the XML template as a single string.

XML Tem-
plate

The button opens an instance of the Event Action Expression Editor.

The XML referred to here is the XML string from which data is to be extracted.

When this type of event action is part of an event handler:

• With a BodOnReceive event, a commonly used function is BODXML(), which ex-
tracts data from the inbound Business Object Document (BOD).

• You can also:
• Use the FILECONTENTS() function to read in the contents of a fixed XML file.
• Use the XML() function to construct an XML string from another collection.
• Reference a variable or parameter.
• Manually type a fixed XML string into the field.

XML

The button opens an instance of the Event Action Set Extract XML Collection form
that allows you to set the extraction path for the XML.

This path is to one or more nodes in the XML string under which the data resides for
the rows to be extracted. This is expressed in XML Path Language (XPath) syntax.

Path

The button opens an instance of the Event Action Set Extract XML Collection form
that allows you to create one or more sets of property name/value pairs that map
values to be extracted from the XML string to properties in each row of the resulting
collection.

The property map consists of a list of comma-separated pairs. Each pair, in turn,
consists of a property name and a path separated by an equals sign.

• The property name governs how the extracted value can be referenced later in
each row of the extracted collection.

• The path describes the location of the data to be extracted for the named property,
relative to each location in the XML string identified by the Path field.
Note: This path is expressed in XML Path Language (XPath) syntax.

Property
Map

Infor Mongoose Core Development Guide | 80

Application Events

Notes/CommentsBut-
ton/Field

The button opens the Event Action Set Result Set ID form, which allows you to
provide a name for the set of records that result from the processing of this event ac-
tion.

Result Set
Assign-
ment

3 Set these parameters and click OK to close the form.

About Event Action Parameters
Depending on the action type, you specify optional parameters for each event action type. You can
specify parameters in any order for a particular action. To list multiple parameters, specify them one
after another, specifying either a space or nothing between them. Event action parameters are defined
on the Parameters tab of the Event Actions form.

Note: You can use the event action parameter forms to define the parameters. When you do, the
parameters are returned to the Event Actions form properly formatted and free of syntax errors.

The syntax for each event action parameter is FUNCTION(value).

Note: Although it is not a requirement that function names be specified by using all uppercase letters,
we recommend the practice, as it leads to greater ease of recognition and readability.

The value enclosed in parentheses can consist of:

• A constant number
• A literal string enclosed in quotation marks
• A Boolean value: TRUE or FALSE
• An event function call

Function call can be nested.

• An expression consisting of a number of these elements that are combined by using operators

You can also use the parentheses after the function to wrap expressions that signify operations to be
performed on the results of the expression.

For example, the function V takes as a parameter the name of a variable. This function can be placed
in the parameters for other functions, for example, METHOD(V(FuncNameVar)).

Function types

Functions can be any of three basic types:

• Parameter functions — These are functions whose parentheses wrap a parameter to the event
action. For example, these are all typical parameter functions:
• SETVARVALUES
• METHOD
• INTERVAL
• EVENTNAME

Infor Mongoose Core Development Guide | 81

Application Events

These functions must always appear at the root level and can never be nested inside any other type
of function.

These functions are identified in this documentation generically as PARAMS(…).

• Value functions — These are functions that call event values such as:
• SUBSTITUTE
• DATE
• ABS
• CEILING

These types of functions can never appear at the root level but must be nested within another
function construct (either a parameter or another function).

These functions are identified in this documentation generically as FUNCTION(…).

• Word functions — These are verbatim words used inside event function calls, such as:
• AS
• STRING
• NUMBER
• DAY
• DATE
Note: Some of these functions can also be used as event function calls. However, these functions
always appear within an event function call.

These functions are identified in this documentation generically as …WORD…

Nesting Function Calls
When defining event action parameters, keep these rules in mind:

• PARAMS(…)-type functions can never be nested.
• FUNCTION(…)-type functions must be nested and can be nested either within PARAMS(…) functions

or within other FUNCTION(…) functions.
• …WORD…-type functions must be nested within FUNCTION(…)-type functions.

This is an example of an event action parameter that uses nested functions:

PARAMS(…FUNCTION1(…FUNCTION2(…WORD1…)…WORD2…)…)

Passing Parameters from Actions
Parameter lists to methods, scripts, web services, and generated events are always enclosed in a
PARAMS(…) function and delimited by commas. Each parameter is specified in one of these ways:

MeaningDirectionSyntax

Pass in the value of the variable var.InputV(var)

Pass in the value obtained by evaluating the expres-
sion

Inputexpression

Infor Mongoose Core Development Guide | 82

Application Events

MeaningDirectionSyntax

Pass in the value of the variable var, and place the
output value into the same variable.

Input and outputRV(var)

Setting Variable and Parameter Values
You can set values for event variables and parameters by using these syntaxes:

SyntaxStorage typeEvent action type

PARMS(RV(var))VariableCall Database Method

Call IDO Method PARMS(RE(param))Parameter

SET(RV(var)=name)VariableGenerate Event

Load IDO Row SET(RE(param)=name)Parameter

SETVARVALUES(var=expr)

or adjusted through SETVARENTRIES(..)

or SETVARNAMEDENTRIES(...)

VariableSet Values

SETPARMVALUES(param=expr)

or adjusted through SETPARMENTRIES(..)

or SETPARMNAMEDENTRIES(...)

Parameter

Setting Event Action Parameters
There are two basic ways you can set parameters for an event action:

• Use the event action parameter forms associated with each action type.

To access these forms, select an Action Type and then click Edit Parameters on the Event Actions
form.

• Specify the parameters directly in the text edit field on the Event Actions form.

You can also begin with the event action parameter forms and then manually edit the output in the
Event Actions form. You can also begin by directly entering starting parameters in the text edit field
on the Event Actions form and then adjust the input using the event action parameter forms.

Note: If you are familiar with the parameters, functions, and syntax for the action parameters, you can
manually enter the parameter information in the text field. However, unless you are very confident in
your ability to write this data from scratch or you are pasting in data from a reliable source, and to help
ensure that you use only valid parameters, functions, and syntax, we recommend that you use the
event action parameter forms, which have been designed specifically for this purpose.

Infor Mongoose Core Development Guide | 83

Application Events

Tips and Guidelines for Using the Event Action Parameter Forms Effectively

While the event action parameter forms make it easier to set event action parameters than creating
them manually, you must still be somewhat familiar with the parameters, functions, and syntax available
for each action type. Probably, the best way to do this is to open the form associated with each action
type and access the online Help for that form and its fields.

Each event action parameter form includes only those parameters and functions that will work for the
selected action type. So, for example, if you are creating an action to notify recipients of something,
only the parameters you might need to create that notification are available from the Event Action
Notify form.

Most options on an event action parameter form include both a field and a button. The field might be
any of these types:

• A text edit field into which you can directly enter the value for that option.
• A drop-down list from which you can select the value you want.
• A combo box that allows you to either select a value from a drop-down list or enter the value manually.

The associated button typically opens either of these forms:

• The Event Action Expression Editor, which is a generic form used to create desired values using
expressions.

• Another auxiliary event action parameter form specifically designed to help with the creation of an
appropriate value for that option.

For example, the Condition button on many event action parameter forms opens the Event Action
Parameter Condition form, which is designed specifically to make it easier to create and format
an appropriate condition statement for the application event system to use.

When you click OK in the event action parameter form, the values you specified are returned to the
parent form, formatted using the correct syntax.

To verify the syntax is error-free, click the Check Syntax button before you proceed.

Example

As part of an application event that notifies a manager when a customer's credit limit has been changed,
you want to prompt a Credit Manager for approval if the new credit limit is $500,000 or less. If the new
credit limit is more than $500,000, then the Credit Supervisor must approve the change. You could use
a Branch action type to determine who gets the prompt message.

To handle this situation, you must perform these steps:

1 On the Event Handlers form, create an event handler that runs every time a customer's credit is
changed.

2 Click Event Actions.
3 On the Event Actions form, specify the action sequence number and select the Branch action

type.
4 Click Edit Parameters.
5 On the Event Action Branch form, click Condition.
6 On the Event Action Parameter Condition form, click Expression 1.
7 On the Event Action Expression Editor form, select the PROPERTY function and specify

CreditLimit as the first argument.

Infor Mongoose Core Development Guide | 84

Application Events

8 Click OK.
9 In the Event Action Parameter Condition > Operator field, select the > (greater than) symbol.
10 In the Event Action Parameter Condition > Expression 2 field, specify 500000.
11 Click OK.
12 In the Event Action Branch > Destination field, perform these actions:

• If the target action sequence step exists, select the number of the action sequence step you want
the handler to go to.

• If the target action sequence step does not exist, specify the number of the step that you plan to
create for the target later.

13 Click OK.
14 On the Event Actions form, click Check Syntax to verify that the parameter syntax is all correct.

If there is an error, an error message is displayed. You can use this error message to determine
what and where the error appears and the preceding context. In many cases, such as this one, you
must have the property name in quotation marks, or the system returns an error. In fact, missing
quotation marks are the most common cause of syntax errors.

If this happens, try to correct the error manually and then click Check Syntax again. Keep doing
this until you have eliminated any errors.

Caution: If you do not correct any syntax errors before you click Edit Parameters again, you will
lose all parameter text and need to start over.

15 Click Save.

Using Expressions in Event Action Parameters
Many, but not all, event action parameters allow you to use expressions, rather than literal values, to
specify the values of parameters. You typically do this when you want to allow for variable or dynamic
values to be used for these values.

For example, you want to specify a group of recipients to receive various notifications and prompt
messages, and that group membership changes often. You can create a global constant value for the
group and then use that global constant whenever you want a message sent to that group. Then, when
the group membership changes, you can change the global constant in one place and all event handlers
that use that global constant automatically pick up the change.

Syntax for Expressions

Use quotation marks to indicate a literal string value. For numbers, dates, or Boolean values
(TRUE/FALSE), quotation marks are not required or allowed.

Consider these examples:

• CONDITION("CreditLimit" < "500000")

Both sides of the comparison are recognized as literal string values and are treated accordingly
when executing the event action. The values are compared alphabetically as strings. Therefore,
this condition results in a false result, because C sorts higher than 5 in the Unicode collation.

• CONDITION(CreditLimit < 500000)

A syntax error is returned, because CreditLimit is not recognized as a valid function.

Infor Mongoose Core Development Guide | 85

Application Events

• CONDITION(P("CreditLimit") > "500000")

Both sides of the comparison are valid, but again, the numeric value 500000 is treated as a literal
string and compared with the value of the Credit Limit field that is returned. Property values are
typeless, so the operation of the comparison depends on the expression on the other side. In this
case, "500000" is a literal string value (as indicated by the quotation marks), so the property value
is compared to it alphabetically as a string and may or may not return the expected result.

• CONDITION(E(MG_CurrentSite) IN ("MI";"ZZ"))

The MG_CurrentSite parameter is set for all running events. It is used to make it easier for event
actions to exit processing based on the value of the current site. A finish action can be used to make
a handler only operate for certain sites.

• CONDITION(P("CreditLimit") > 500000)

The current value of the CreditLimit property is used, but this time it is compared mathematically
as a numeric value to the numeric constant 500000. If the property value cannot be converted
numerically (for example, if it contains non-digit characters), a runtime error occurs.

About Event Action Parameter Functions
Predefined functions can be used, within event action parameters, to build expressions that reference
values needed by that action. These values can represent variable values, parameter values, or
subactions. For example, the GC function can be invoked to reference a particular event global constant
value. Or the SUBSTITUTE function can be used to build an expression that substitutes certain values
within a defined string at run time.

All these functions are available from the Select a function field on the Event Action Expression
Editor form. You can also use them by typing them manually into an expression in the Parameters
field of the Event Actions form.

• ACTIONSEQ
• ACTIONTYPENAME
• ANYHANDLERSFAILED
• APPNAME
• ATTACHMENTEMBEDDED
• ATTACHMENTLIST
• ATTACHMENTNAME
• ATTACHMENTS
• ATTACHMENTSEQ
• BEGINDATE
• BODNOUN
• BODVERB
• BODXML
• CAST
• CEILING
• CLIENTSUBSTITUTE
• COMPANYNAME
• CONFIGNAME

Infor Mongoose Core Development Guide | 86

Application Events

• CURDATETIME
• CUSTOMDELETE
• CUSTOMINSERT
• CUSTOMUPDATE
• DATE
• DATEADD
• DATEDIFF
• DATEPART
• DBFUNCTION
• DOCDESC
• DOCEXT
• DOCINTERNAL
• DOCMEDIATYPE
• DOCMODIFIED
• DOCNAME
• DOCREADONLY
• DOCSEQ
• DOCTYPE
• E
• ENTRY
• ENTRYNAMES
• EVENTNAME
• EVENTPARMID
• EVENTREVISION
• EVENTSTATE
• EVENTSTATEID
• EVENTTITLE
• FE
• FGC
• FILECONTENTS
• FILTER
• FILTERMETHODPARM
• FILTERPROPERTY
• FILTERSTRING
• FILTERTASKPARM
• FLOOR
• FP
• FSV
• FV
• GC
• HANDLERACCESSAS
• HANDLERIGNORESFAILURE
• HANDLERSEQ
• HANDLERSUSPENDS

Infor Mongoose Core Development Guide | 87

Application Events

• HANDLERSYNCHRONOUS
• HANDLERTRANSACTIONAL
• HASBEGUN
• HASFINISHED
• IDO
• IF
• INITIATOR
• INSIDEDATABASE
• INSTR
• LEN
• LOADFLAGS
• LOWER
• MESSAGE
• METHOD
• METHODPARM
• METHODPARMS
• NAMEDENTRY
• NEWGUID
• NONRESPONDERLIST
• NUMENTRIES
• ORIGINATOR
• P
• POSTQUERYACTIONS
• POWER
• PROPERTY
• PROPERTYAVAILABLE
• PROPERTYMODIFIED
• PROPERTYNAMES
• RECIPIENTLIST
• RECIPIENTS
• RECORDCAP
• REPLACE
• RESPONDERLIST
• RESPONDERS
• ROUND
• ROWS (for IDO Load Collection action)
• ROWS (for IdoPostLoad-Collection event)
• SUBSTITUTE
• SUBSTRING
• SUBXML
• SV
• TASKNAME
• TASKNUMBER
• TASKPARM

Infor Mongoose Core Development Guide | 88

Application Events

• TASKPARMLIST
• TASKPARMS
• TASKSTATUS
• TRUNC
• UPPER
• USERDESC
• USERNAME
• V
• VARIABLENAME
• VARIABLEVALUE
• VOTINGDISPARITY
• VOTINGRESULT
• VOTINGTIE
• WORKINGDIR
• XML

In addition, use these "pre-parser" functions when you need an expression that contains elements for
other functions/expressions:

• TGC
• TV

Using Filter Functions
Filter functions are basically used to retrieve a value from somewhere and return it as a string enclosed
in single quotation marks. This applies to these filter functions:

• FE
• FGC
• FILTER
• FILTERMETHODPARM
• FILTERPROPERTY
• FP
• FSV
• FV

The sole purpose of the filter functions is to construct phrases for SQL WHERE-clauses, which are
used in the FILTER() keyword. So it follows that the only use of the standalone FILTER() function is
when constructing a phrase for a SQL WHERE-clause using an expression that is not a PROPERTY,
V (variable), E (event parameter), SV (session variable), GC (global constant), or METHODPARM
(method parameter), because all of those have corresponding filter functions that you could use without
bothering about FILTER() itself.

Infor Mongoose Core Development Guide | 89

Application Events

For example, a parameter named Prefix is passed to your application event. This application event is
designed to do something to all the items whose item ID code begins with the prefix. You can load
those items using a Load IDO Collection action with the following parameters:

IDO("SLItems")
FILTER(SUBSTITUTE("Item LIKE {0}", FILTER(E(Prefix) + "*")))
PROPERTIES("Item, Description")

Now suppose your application event fires and is passed a prefix of AL.

The expression inside the first FILTER() keyword works like this (from the inside out):

• E(Prefix) + "*" evaluates to: AL*
• The FILTER() around that places single quotes around it:'AL*'
• The SUBSTITUTE() function turns that into: "Item LIKE 'AL*' "

This resulting string is an ideal SQL WHERE-clause, because the IDO Runtime Service turns the
asterisk into a percent-sign that SQL Server understands.

Note: On the other hand, an FE(Prefix) expression would evaluate to " 'AL' ", which is not conducive
to getting the asterisk inside the single-quotes where we need it. So, in effect, we are postponing the
wrapping of the single-quotes until just the right time.

The same effect could be implemented using another level of SUBSTITUTE(), or string concatenations
using quoted quotes, but FILTER() is cleaner.

About Event Variables and Initial States
If an event handler has variables associated with it, those variables can be assigned an initial state.
This set of values are assigned when the event handler starts to execute. Each initial state consists
of:

• A name that identifies it in the system
• Any number of event variables with the initial values they are to have when the event handler starts

to execute

For example, you want to use these initial values with your event handlers variables:

CommentsInitial valueName of variable

250Increment

ABItemTypes

In this case, the value is deter-
mined by the value of the Max-
Times global constant.

GC(MaxTimes)TimesRemaining

Initial states are defined by using the Event Variable Groups form. Once created, you can use a
defined initial state with any other event handler by selecting it in the Initial State field on the Event
Handlers form.

Infor Mongoose Core Development Guide | 90

Application Events

About Event Global Constants
An event global constant is a named static value that event expressions can reference during processing
of the associated event handlers.

Defining and Using Event Global Constants
Event global constants are defined by using theEvent Global Constants form.

The system references a global constant by using a function mechanism that allows dynamic evaluation
at each reference.

Event global constants are used when defining a set of choices to offer the recipients of a prompt
message. For example:

On the Event Global Constants form, specify this information:

Name
Specify PromptChoicesYesNo.

Access As
This field displays the current Access As identifier, which identifies who created the metadata object.

Value
Specify 1,sYes,0,sNo.

You can then reference this constant for any prompt event action by using the expression:

CHOICES(GC(PromptChoicesYesNo))

Example: Using an Event Global Constant
You have one person in your organization who is authorized to review and set customer credit limits.
You can use an event global constant to refer to that person and then use it in a variety of ways. You
can set up these events:

• Email this person when an order exceeds a customer's credit limit.
• Notify this person when a customer has been placed on credit hold for some reason.
• Prompt this person for a response to a request for an increase to a customer's credit limit.

Later, if this person is replaced by another person who has the same respnosibilities, you can simply
change the reference on this form, so that all these actions involve the new person.

Infor Mongoose Core Development Guide | 91

Application Events

About the Application Event System Design Forms
The system includes a set of specialized forms created to enable you to create and use your own
custom application events. With the exception of the Access As form and the System Configuration
Parameters form in this table, these forms are located in the Explorer under Master Explorer > System
> Event System. The Access As and System Configuration Parameters forms are located at Master
Explorer > System.

Access to these forms is controlled by the System Administration authorization group.

This table lists and briefly describes the use of the application event system design forms:

DescriptionForm name

Although not directly used in the creation and customization of application events
and handlers, this form displays the current Access As setting.

The Access As value is an indicator of which application event system elements
you are authorized to modify and delete.

Access As

This form is used to name application events. Once named here, application
events are available on other forms as well, particularly the Event Triggers and
Event Handlers forms.

Events

This form is used to define event triggers, which set conditions that cause a named
application event to fire.

Event Triggers

This form is used to display and define event handlers, which determine the work
to be done when an application event fires.

Event Handlers

This form is used to present a graphical representation of an event handler flow.
You can also use this form to access the Event Actions form for selected event
actions to view or modify them. Finally, you can also add event actions to an event
handler flow by using this form.

Event Handler
Diagram

This form is used to change the order of any handlers that have the current Access
As identifier as indicated on the Access As form.

Event Handler
Sequence

This form is used to display and define the actions to be performed by a particular
event handler during its execution. These are the individual tasks accomplished
by the event handlers.

Event Actions

These forms are used to define the event action parameters for each action type.Event action pa-
rameter forms

This form is used to display and define initial states, which are sets of event
variables and the initial values they are to pass to the event handler when it starts
to run.

Event Variable
Groups

This form is used to display and define event global constants, which are static
values that can be accessed and used by expressions during the running of an
event handler.

Event Global
Constants

Infor Mongoose Core Development Guide | 92

Application Events

DescriptionForm name

This form is used to define certain parameters that affect the system configuration.

Although not directly used in the creation and customization of application events
and handlers, you can use this form to control some aspects of how application
events and handlers behave on the system. These aspects are concerned
mostly with retest and reset intervals that globally govern when and how often
various conditions can be retested or events can retry.

System Config-
uration Parame-
ters

This form is used to activate predefined event handlers that represent common
workflows. You must specify some information, such as users or email addresses
that are notified when an application event occurs. You can also copy and modify
these event handlers.

Note: This form is not available with all Mongoose-based applications, including
Mongoose as a stand-alone application.

See the online help in your application for this form.

Workflow
Event Handler
Activation

This diagram shows the functional relationship between the design forms and elements for the application
event system:

Setting up Custom Application Events and Handlers
To create and use your own custom application events, there are several important steps and
considerations to keep in mind. You must:

• Design and define your custom event.

Infor Mongoose Core Development Guide | 93

Application Events

• Carefully plan and set up the order in which event handlers and actions execute.
• Periodically refresh the metadata cache to ensure that you are working with the most current version

of the event metadata.

Designing a Custom Application Event
When you create a custom application event, you must also define what fires the application event. In
the current WinStudio system, there are ways to generate a custom event:

• Create an event trigger by using the Event Trigger form. This step is the easiest and most common
way to generate a custom application event.

• Use Generate Event action type in another event handler.
• Use a form or WinStudio event handler with Generate Application Event response type.

Note: Do not confuse the form or WinStudio event handlers with the application event system
handlers.

• Use the WinStudio API to write a custom script that generates an application event.
• Invoke an IDO Extension Class method that calls the FireApplicationEvent() method.
• Use the Mongoose Representational State Transfer (REST) service,

IDORequestService/MGRestService.svc.
• Use a SQL stored procedure or trigger to call the PostEventSp stored procedure.

These steps represent a typical process for creating custom application events:

1 Optionally, on the Events form, specify the name of the application event before you define how it
should be triggered or handled.

Note: If you do not name the application event on the Events form, you can specify the application
event name on the Event Triggers form or the Event Handlers form. However, application events
that are named on those forms are not displayed on the Events form.

2 On the Event Triggers form, define one or more triggers that fire the application event.

Note: This step is required only if you want to fire the application event by using an event trigger.

3 On the Event Handlers form, define one or more event handlers that execute when the application
event fires.

Note: Each application event can have multiple handlers that execute when the application event
fires. The order in which multiple handlers execute is controlled by a number of factors.

4 On the Event Actions form, define one or more event actions for each event handler.

5 If required, on the Event Variable Groups form, name and define an initial state for the event
handler to use.

6 If required, on the Event Global Constants form, name and define any global constants for the
event handler to use.

7 Test the application event and its triggers and handlers on a test system before implementing them
on your live system.

Infor Mongoose Core Development Guide | 94

Application Events

Ordering Event Handlers
When an event handler is first defined and saved, the system automatically assigns a handler sequence
number. When the event handler is first saved, the system checks to see if there are other handlers
associated with the named application event. Depending on the results of that check, the system then
assigns 1 to the handler (if there are no other handlers associated with the event) or the next available
integer (if there are other handlers associated with the event).

In general, then, if an application event uses multiple event handlers, by default, the system uses the
handler sequence numbers to determine the order in which the handlers execute.

However, It is possible to indirectly alter this default order. This is done either by:

• Using the Keep With and Chronology fields on the Event Handlers form
• Moving your own adjacent event handlers up or down in the sequence by using the Event Handler

Sequence form

To alter the default order in which event handlers execute using the Keep With and Chronology fields
on the Event Handlers form:

1 Optionally, from the Keep With drop-down list, select the event handler that you want to use as a
reference point and anchor for the current handler.

Note: This step is not required if you are using the First or Last option in the Chronology field.

2 From the Chronology drop-down list, select the option that you want the current handler to use
with respect to the handler you selected in Step 1.

This table shows the list of options:

DescriptionOption

Executes the current handler before any other handlersFirst

Executes the current handler just before the referenced handlerBefore

Executes the current handler in place of the referenced handler. In this
case, the referenced (original) handler does not execute at all

Instead

Executes the current handler instead of the referenced handler and any
other handler that may be referenced to execute instead of (Instead) that
same handler

Exclusively In-
stead

Executes the current handler after the referenced handlerAfter

Executes the current handler after all other handlersLast

Resequencing Event Handlers
Use the Event Handler Sequence form to change the sequence in which your event handlers execute
for a specified event.

Note:

Infor Mongoose Core Development Guide | 95

Application Events

• This form is intended to be accessed as a linked form, only from the Event Handlers form through
the Resequence button. If you open it in standalone mode, the results can be unpredictable.

• You can change the order only of event handlers that have the same Access As value that is
displayed on the Access As form, and then only if they are grouped together (that is, adjacent to
one another in the sequence). You cannot use this form to change the sequence of event handlers
with other Access As values.

• To change the order of your event handlers with respect to those of others (that is, with different
Access As values), use the Keep With and Chronology fields on the Event Handlers form.

To change the sequence of an event handler:

1 In the grid view, select an event handler that has your Access As value.

2 Click the Up or Down button to move the selected handler up or down in the sequence, keeping in
mind the restrictions mentioned above. If you try to violate those restrictions, the system generates
an error and you cannot complete the move.

3 Save your changes.

Ordering Event Actions
A single event handler can contain multiple event actions. When you define an event action, you must
assign an action sequence number in the Action Sequence field of the Event Actions form. You can
assign any number you want in that field and the system automatically sorts the actions in the correct
sequence on the Event Handlers form. When the event handler executes, the system uses this Action
Sequence number to determine the order in which the actions execute.

The only exception to this rule is that, if you select a particular action (other than 1) in the Initial Action
field of the Event Handlers form, then processing of the event actions begins with the designated
action and proceeds from there. So, for example, if you have four actions associated with a handler,
and you later decide that you want action number 3 to be the starting point, you would select 3 in the
Initial Action field. In this case, only actions 3 and 4 executes. The system skips over actions 1 and
2. You can later execute these actions by using Branch or Goto action types, with one of these actions
as the destination.

Determining Names of IDO Collections and Properties
To create custom event handlers and actions, you are often required to know the internal names of
the collections, known internally as IDO collections, and the properties you want to refer to. For example,
to set up a handler, you often need the name of the IDO collection associated with a particular form.
To include dynamic content in the subject or body of a message, you often must know the internal
name of a property within that IDO.

Determining the Name of an IDO Object

To determine the name of an IDO object for an event handler definition:

1 Open the form that uses the IDO collection you require.

Infor Mongoose Core Development Guide | 96

Application Events

For example, if you are setting up an event handler to work with customer records, open the
Customers form.

2 Go into Design Mode for that form.

3 Verify that the Form properties sheet is displayed.

If not, select the View → Form Properties option.

4 Select the Collections tab.

The names of all IDO collections associated with that form are displayed in the Collections list at
the top of the form. Usually, there is only collection, which makes it easy to figure out. If more than
one collection is listed, you must take further steps to determine which is the one you need. properties
sheet is displayed.

The internal name of the IDO is that part of the IDO name that displays after the period. For example,
the Customers form uses the SL.SLCustomers IDO. The name of the IDO collection as you need
it to create an event handler, is SLCustomers.

Determining the Name of a Property bound to a Form Component

To determine the name of a property bound to a form component:

1 Open the form that has the field or other component that displays the data to which you want to
refer.

For example, to create a subject line that includes a customer ID number and name, open the
Customers form.

2 Go into Design Mode for that form.

3 Select the desired component, for example, the Customer ID field.

4 Verify that the Component properties sheet is displayed.

If not, select the View → Component Properties option.

5 On the Component properties sheet, locate the Data Source → Binding field.

The component’s property name is displayed in that field after the period. For example, for the
customer ID number, the Binding field displays object.CustNum. Thus, the Customer ID field
is bound to the property named CustNum.

Refreshing the Metadata Cache
Because certain event metadata is cached for faster performance, the IDO metadata cache must be
refreshed periodically: after changes to event metadata (that is, after making changes to events,
handlers, actions, triggers, and global constants). This must be done, at a minimum, after doing
development work, before testing, and after synchronizing the metadata on your system.

Note:
• If you have multiple application servers in your system, you must refresh cached metadata for each

application server on which metadata might have been cached. The best way to do this is by
unloading global objects from your system.

Infor Mongoose Core Development Guide | 97

Application Events

• Any event metadata that is not referenced within two minutes is automatically refreshed from the
cache. That is why you might notice that things work the way you expect, even without manually
refreshing the cached metadata. We recommend that, as a precaution, you manually refresh the
cached metadata to be sure.

These are the ways you can refresh the cached metadata:

• Click the Discard Cache button on the Utilities tab of the Configuration Manager.
• Unload global objects.

This requires that you first select the Unload IDO Metadata with Forms option in User Preferences.

• Restart the IDO Runtime service on the Applications server or the local instance of the IDO Runtime
host service.

Refreshing Cached Metadata by Unloading Global Objects

With the correct system settings, you can have the system refresh the cached metadata automatically
every time you unload all global objects.

To refresh cached metadata by unloading global objects:

1 In WinStudio, select View > User Preferences.

2 Select the Runtime Behaviors tab.

3 Select the Unload IDO Metadata With Forms check box.

While working on event metadata, periodically unload global objects, and the cached metadata is
automatically discarded and refreshed with the global objects.

Refreshing Cached Metadata by Restarting the IDO Runtime Service

If you do not want to refresh the cached metadata by unloading global objects from your system and
you are not using the IDO Runtime Development Server on your local machine, you can discard the
cached metadata by manually stopping and restarting the IDO Runtime Service on the application
server. This works because the metadata cache is not saved when the service is stopped.

To refresh cached metadata by restarting the IDO Runtime Service:

1 On the application server, open Control Panel.
2 Select Administrative Tools > Services.

3 From the list, double click Infor Framework IDO Runtime Service.

4 In the Infor Framework IDO Runtime Services Properties dialog box, click Stop.

5 When the IDO Runtime Services Properties dialog box indicates that the service has stopped,
click Start.

Refreshing Cached Metadata in the IDO Runtime Development Server

If you are using a local installation of the IDO Runtime Development Server, you can refresh the cached
metadata manually.

Infor Mongoose Core Development Guide | 98

Application Events

To manually refresh cached metadata in the IDO Runtime Development Server:

1 In the IDO Runtime Development Server, select the configuration for which you want to refresh the
cached IDO and event metadata.

2 From the Configuration menu, select Discard IDO Metadata Cache.

Tracking Application Event System Status
Some application events can take a considerable amount of time to process, especially if they involve
event messages that require responses from the recipients. The system provides a number of tools
and forms that allow you to track the status of application events as they execute and after they have
finished executing. Some of these forms also allow you to temporarily adjust the behavior of handler
execution.

These forms are located in the Explorer under Master Explorer > System > Event System.

Initially, these forms can be accessed only by members of the System Administration authorization
group.

These forms can all be used to track various aspects of event system status:

• Event Status form
• Event Handler Status form
• Event Queue form
• Event Revisions form
• Event Handler Revisions form
• Suspended Updates form

About the Application Event System Messages
Event messages in the application event system can be generated by:

• The system, as part of an event handler’s actions
Note: Only Notify and Prompt action types can generate messages.

• Other users on the system, through the Send Message form

Each message is visible only by the recipients and optionally, the sender of that message.

Event message-related forms

Event message-related forms are used to view, sort, file, respond to, and send messages generated
within the application event system. These message forms reside in the Master Explorer > System
> Messages folder.

The application event system uses these message-related forms:

Infor Mongoose Core Development Guide | 99

Application Events

• Inbox
• Saved Messages
• Send Message

Responding to System-Generated Messages
If the message is the result of a system-generated prompt, each recipient can respond to the prompt,
usually by means of a set of voting buttons.

If the message is also sent to the recipient’s external email inbox and the recipient responded to the
email message, then the message in the refreshed Inbox is marked as expired and the buttons are
inactive, so the recipient cannot respond twice.

If the message is system-generated and involves variables, for each variable, depending on the Variable
Access setting for the event variable (on the Event Actions form) or initial state (on the Event Variable
Groups form) or payload status (on the Event Action Notify or Event Action Prompt form), recipients
can:

• Provide an optional response
• Provide a mandatory response
• Only read the variable value
• Not see the variable value at all

Setting Variable Access
The effective visibility and writability of each variable displayed on the Inbox form is determined by:

• What type of action generated the message (Notify or Prompt)
• The (optional) variable access level as specified on the Event Action form for the action itself and/or

on the Event Variable Groups form for the event handler’s initial state and/or on the Event Action
Notify or Event Action Prompt form for the action with regard to the payload status of the property
that corresponds to the variable, when the handler is associated with an IDO event.

For Notify type messages, the default for variable access is Read-Only. You can use the variable
access options to override this to Hidden for each variable.

For Prompt type messages, the default for variable access is Writable. You can use the variable
access options to override this to Hidden, Read-Only, or Mandatory for each variable.

To change the value of a variable that may appear with a message in the Inbox form, you can do any
of these actions:

• Specify the data by using the Variables tab on the Inbox form as part of a response to a Prompt
action.

• Use a Set Values event action with the function syntax:
SETVARVALUES(VariableName=expression).

• Use any of various event actions that can set a variable on output by using the function syntax:
RV(VariableName).

Infor Mongoose Core Development Guide | 100

Application Events

Setting Translatable Captions for Variables
On the Inbox form, the Variables > Caption column displays the contents of the notify or prompt
message's variable captions in the current user’s language. This assumes that:

• The Caption component attributes are set to interpret the bound contents.
• The Caption contains a translatable string name.

For payload variables resulting from an IDO event, this string name may come from an IDO property’s
label string ID. For non-payload variables that are created by an event action, define this string name
by using the Variable Access tab on the Event Actions form.

Moving Messages Between Folders
You can use the Saved Messages form to move messages from one folder to another. If the folder
does not already exist, you can create the folder at the same time.

To move a message from one folder to another folder:

1 Open the Saved Messages form.

2 From the Folder Name field, select the folder in which the message you want to move is currently
placed. All messages in that folder are displayed in the grid.

3 Select the message that you want to move.

4 In the Folder Name field, perform one of these actions:

• To move the message to an existing folder, specify the name of the folder.
• To create a new folder and move the message to that folder, specify the name of the new folder.

5 Save your change.

Sending Email to External Email Inbox for Prompts
If a user is set up in the Users form to allow the system to send external prompts, then a prompt action
sends the message both to the application's Inbox form and to the recipient’s Inbox in an external
email client such as Microsoft Outlook. The message that is sent to the external email system is an
HTML-formatted email that consists of these parts:

• Original subject in Subject line
• Category
• List of internal recipients
• List of internal Cc recipients
• Original Message (either in plain text or HTML format)
• Original Question
• Choices, as individual hyperlinks to a .NET active server page (ASP) that records the vote
• Payload, which is the contents of the Variables grid from the Inbox

Infor Mongoose Core Development Guide | 101

Application Events

Text in the Subject, Category, Message, Question, Choices, and payload captions can be translated
and formatted based on the default language specified for the recipient user in the Users form.

When the recipients vote by clicking the link in the email, their Windows-default web browser opens
or opens a new tab, as applicable, and sends the information from the link they clicked to the ASP URL
that is included (and hidden) in the email. This URL is built by the system based on the web server list.

The ASP then registers the vote programmatically, as if the recipient had logged into the system,
displayed the same message in the Inbox, and selected the corresponding Choice button on the
Response tab.

The web page then displays a success or failure message.

The message displays both in email and in the Inbox form, but only one response is allowed:

• If users respond from email first, when they display the Inbox (properly refreshed), the message is
expired and the buttons are inactive.

• If users respond from the Inbox first, then clicking a link in the external email brings up the web
page with a message that the message has expired and they already voted, using the previously
selected choice.

About Prompts and Responses
If a message is the result of a Prompt action, the sender of that message can request a specific response
from each recipient, usually in the form of a button-vote mechanism. In such cases, the system must
be set first to wait for responses, then to know how to handle responses as they are received, and
finally, be instructed what to do when responses are not received within a specified timeout period.

Incoming prompts request a response from recipients (using the Question field on the Inbox form or
the external email) and display a set of choices. The choices are displayed in the form of voting buttons
in the Response tab area of the Inbox form, or in the form of links in an external email. For example,
a prompt may include buttons or links labeled:

• Approve or Disapprove (default option)
• Yes or No
• OK, Send More Info, or Cancel

To customize the choices for a prompt, you must include a Prompt action with a Choices parameter
as part of the event action definition. This Choices parameters consists of the CHOICES function
followed by a string expression that evaluates to a comma-separated list that contains an even number
of elements (value/label pairs). For example, if you want the voting buttons to be labeled Yes and No,
with corresponding values returned to the action to be 1 and 0, you can include this parameter:

CHOICES("1,sYes,0,sNo")

In this example, the strings sYes and sNo are WinStudio form strings. These are defined for the system
as Yes and No, respectively.

If you want your button labels to be localized, for the recipient, you must:

• Use names of existing form strings (as found in the Strings table).

Infor Mongoose Core Development Guide | 102

Application Events

OR

• Add your own form strings, using the Strings form, and provide the necessary translations.

To open the Strings form, you must be in Design Mode and from the Edit menu, select Strings.

If localization is not an issue, you can also use a literal value that displays on the button verbatim. To
specify the string as a literal value here, simply specify it as a list value. If the system does not find the
string in the Strings table, the system automatically treats it as a literal value.

Using Custom Entry Forms
For most Prompt messages - that is, messages that require a response from the recipients - you can
gather recipients' responses using the Question and Choices fields. In some cases, you might need
to gather more specific or detailed responses. You might want to collect recipients' responses by means
of a custom form.

To use a custom entry form with a Prompt message:

1 Create the custom entry form.

We recommend that you create the form from scratch.

Include buttons or other devices to allow the recipient to indicate the desired choice.

Use form event handlers to define how these buttons behave. To return the recipient's choice, each
of your form's buttons should generate an event, for example, Accept, with two handlers. The first
handler, of set values type should set the variable StdVote to the positional number of the voting
result, for example 1, or 2, or 3. The second handler should generate the event StdFormExitOk.
You should also include a button to allow the recpient to exit without voting. This button should
generate an event, for example, Cancel, with a single handler that generates the event
StdFormExitCancel.

2 Include any display fields that you might need to display relevant information.

To display an event variable in a component, bind it to a form variable named for that event variable.
For example, to display the Row.CoNum event variable, create an component of type Edit and set
its Data Source Binding attribute to variables.Row.CoNum. At runtime, the component will be
automatically displayed, enabled, and/or decorated according to that event variable's Variable
Access setting (Hidden, Read-Only, Writable, or Mandatory).

To display other information contained in the Prompt message, you can similarly bind components
to the following form variables:

• StdFrom
• StdTo
• StdSubject
• StdMessage
• StdSent
• StdCC
• StdQuestion
• StdResponseDate
• StdExpiresAfter
• StdExpired

Infor Mongoose Core Development Guide | 103

Application Events

• StdRead
• StdVote (set to the SelectedChoice property for the current message, or -1 if the message is

expired)

You can also use this custom form to collect data values, perform calculations, or do anything else
you want it to do. You can perform initialization actions that depend on the above form variables by
adding handlers on the StdInboxPayloadInitCompleted event.

3 Create an event action for a Prompt action type.

4 Click the Edit Parameters on the Event Actions form to open the Event Action Prompt form.

5 In the Entry Form field, specify the name of the custom entry form you created.

6 Set up the rest of the Prompt action as desired.

Note: The Send External Prompts check box might be selected for some users on the Users form.
In this case, you must include a note in the body of the prompt email, instructing users to log in to this
application to enter the requested data or perform the actions needed on the custom form.

About Voting Rules in Prompts
When a prompt is sent to a single recipient, the result of the prompt is the return value from that
recipient's choice. However, when a prompt is sent to multiple recipients, you must select a vote-counting
method to determine the result of the prompt and include a Voting Rule (VOTINGRULE) parameter in
your event action definition.

The following table lists and describes the available voting rules.

DescriptionRule

A choice must receive more than 50% of the vote
to win. As soon as more than 50% of the recipi-
ents respond with a particular choice, that choice
wins.

For example, suppose a prompt went to nine re-
cipients. Of the first six to respond, five vote in
favor. At that point, the vote is over with this op-
tion, because five votes is more than 50%. The
event handler moves on, and it does not matter
what the remaining three recipients do.

If you use this voting rule, you should use a Vot-
ing Tie (VOTINGTIE) parameter to tell the system
how to handle a tied vote.

Majority

Infor Mongoose Core Development Guide | 104

Application Events

DescriptionRule

The choice with the highest number of votes wins,
even if the choice does not receive more than
50% of the vote.

For example, suppose three choices are offered,
and:

• The first choice receives 24% of the vote.
• The second choice receives 43% of the vote.
• The third choice receives the remaining 33%

of the vote.

In this case, the second choice wins, even though
the votes received are less than 50% of the total
vote.

If you use this voting rule, you should use a Vot-
ing Tie (VOTINGTIE) parameter to tell the system
how to handle a tied winning vote.

Plurality

The choice with the highest number of votes wins,
but only if a specified minimum percentage of
votes is reached.

If you use this rule, you must also include a Mini-
mum Percentage (MINIMUM) parameter.

For example, if three choices are offered to 19
recipients, and you specify a minimum percent-
age of 40% to win, then:

• In an 8-7-4 split, the choice with eight votes
wins because this choice meets the minimum
percentage.

• In a 7-6-6 split, there are no winners, because
no choice meets the minimum percentage. In
this case, the system must deal with the vote
as an indeterminate result.

With a simple Plurality vote, the choice that
reaches seven votes in a 7-6-6 split wins.

If you use this voting rule, you should use a Vot-
ing Tie (VOTINGTIE) parameter or Voting Dispar-
ity (VOTINGDISPARITY) parameter to tell the
system how to handle the vote.

Conditional Plurality

Infor Mongoose Core Development Guide | 105

Application Events

DescriptionRule

The first choice to reach a specified minimum
number of votes wins.

If you use this rule, you must also include a Mini-
mum Count (MINIMUM) parameter.

For example, if three choices are offered to 13
recipients, and you specify a minimum of five
votes to win, the first choice to receive five votes
automatically wins.

Note: As soon as the minimum count is reached,
event handler execution moves immediately to
the next action. In this case, the system expires
any responses not yet received, and no further
voting can take place.

Minimum Count

The first choice to receive a specified percentage
of the vote wins. The percentage is based on the
number of recipients of the prompt, not the num-
ber of respondents.

If you use this rule, you must also include a Mini-
mum Percentage (MINIMUM) parameter.

Note: As soon as the minimum percentage is
reached for a choice, event handler execution
moves immediately to the next action. In this
case, the system expires any responses not yet
received, and no further voting can take place.

Minimum Percentage

The first response to the prompt wins, regardless
of the choice.

Note: As soon as the first response is received,
event handler execution moves immediately to
the next action. In this case, the system expires
any responses not yet received, and no further
voting can take place.

Earliest Response

Infor Mongoose Core Development Guide | 106

Application Events

DescriptionRule

If any one respondent votes for the preferred
choice, that choice wins. In a case where none
of the respondents select the preferred choice,
then this rule behaves as the Plurality rule for the
remaining choices.

If you use this rule, you should also include a
Preferred Choice (PREFCHOICE) parameter to
specify which choice is the preferred choice.

For example, if you have three choices, and you
specify the first choice as the preferred choice,
then:

• If anyone votes for the first choice, that choice
wins.

• If the end vote is a 0-6-5 split, the second
choice wins.

Note: As soon as the preferred choice receives
a vote, event handler execution moves immedi-
ately to the next action. In this case, the system
expires any responses not yet received, and no
further voting can take place.

Preferred Choice

If a specified number of votes for a specified
choice is cast, that choice wins. If you use this
rule, you must also include a Minimum (MINI-
MUM) parameter to specify the minimum count,
and a Preferred Choice (PREFCHOICE) param-
eter to specify which is the preferred choice.

For example, if you set the Minimum to 3 for a
Preferred Choice of Approve, and three recipi-
ents respond with Approve, the preferred choice
wins. If less than that number of votes are cast
for that choice after all recipients have responded,
the vote reverts to Plurality. In that case, the
preferred choice may win.

Note: When you set the Minimum to 1, this rule
behaves as a Preferred Choice.

Minimum Count Preferred Choice

Infor Mongoose Core Development Guide | 107

Application Events

DescriptionRule

If a specified percentage of votes for a specified
choice is cast, that choice wins. If you use this
rule, you must also include a Minimum (MINI-
MUM) parameter to specify the minimum percent-
age, and a Preferred Choice (PREFCHOICE)
parameter to specify which is the preferred
choice.

For example, if you set the Minimum to 25% for
a Preferred Choice of Approve, and two of eight
of recipients respond with Approve, the preferred
choice wins. If less than that percentage of votes
are cast for that choice after all recipients have
responded, the vote reverts to Plurality. In that
case, the preferred choice may win.

Minimum Percentage Preferred Choice

About Voting Status
In the Application Event System, multiple voters can be included in a Prompt action. You can use the
Voting tab on the Event Status form and Event Handler Status form to monitor the voting status of
a prompt. As an administrator, you can use voting status to determine why a suspended row may not
be released yet. The Voting tab provides this information:

• Which message recipients have yet to vote
• The number of votes still needed to reach a quorum
• The length of time the workflow has been waiting since voting began, and since the last vote
• Current vote tally statistics for each choice, including:

• Front-runner: indicates whether this choice is in the lead to win
• Tied: indicates whether this choice is tied with another choice
• Margin of Victory/Lead: numerically indicates how far ahead this choice is in relation to second

place, or how far behind a choice is in relation to first place
• Votes to Win: indicates the number of additional votes required to win
• Status: indicates whether a choice is a contender, the winner, or a loser

Dealing with Indeterminate Voting Results
These example situations create indeterminate voting results and set action attributes that are exposed
as event functions that can be evaluated by subsequent event actions:

• Any disagreement among multiple recipients that is registered as soon as a disagreement is detected.
This can include a vote similar to the example offered in the Plurality description.

The associated event function is the VOTINGDISPARITY() event function, which is a Boolean
function that indicates only that there was a disagreement.

Infor Mongoose Core Development Guide | 108

Application Events

• A tie in the case of a Plurality or Majority vote that is registered at the point when all responses have
been received or when the timeout period has expired.

The associated event function is the VOTINGTIE() event function, which is a Boolean function that
indicates only that there was a tie.

You can use the returns from these functions, along with the functions RECIPIENTS(), RESPONDERS(
), RECIPIENTLIST(), RESPONDERLIST(), and NONRESPONDERLIST() to take further actions, such
as:

• Reprompting all the recipients and try to get a consensus
• Reprompting only a select group of the respondents and urging them to adopt a different choice
• Reprompting only recipients who have not yet responded
• Taking some other predetermined action

About Quorums
On a Prompt action, a quorum is automatically calculated based on the number of recipients, the voting
rule, and voting parameters such as Minimum. If there is a number of votes by whose tally a voting
result can be determined unambiguously, that number is the quorum. Otherwise, the quorum is the
number of recipients, that is, everyone has a chance to vote unless a timeout expires. As soon as the
quorum is reached, voting is closed, any remaining unvoted messages are expired, and the application
event continues to the subsequent event action.

However, if you specify a Quorum value, that overrides the automatic calculation. For example, if a
message requiring a response is sent to 10 people, but you want a quorum to be reached when only
four have voted, then specify 4 as the Quorum value.

By default, if Quorum is not specified or is specified with a positive value, Wait for Quorum is true;
that is, the application event waits until the quorum is reached before it continues with the next event
action. If Quorum is specified with a non-positive value, the Wait for Quorum default value is FALSE.
If these settings conflict, for example Quorum is 3 and Wait for Quorum is FALSE, the system displays
an error message.

If Wait for Quorum is FALSE, the application event does not wait for a quorum to be reached. As soon
as the messages are sent, execution continues with the next event action. If the system is not waiting
for a quorum, the event designer must determine when and under what circumstances enough votes
have been received and exactly what further actions the system is to take. This can be done using
VOTINGRESULT(), RESPONDERS(), RECIPIENTS(), and so on, in combination with the Wait or Sleep
actions.

Infor Mongoose Core Development Guide | 109

Application Events

Chapter 5: Schema (SQL Table and Column) Editing

Maintaining Tables and Other SQL Schema Elements
Note: Building IDOs over tables in schemas other than dbo is not currently supported.

See these topics to maintain tables and other SQL schema elements from the application:

• Creating Tables on page 110
• Maintaining Columns on Tables on page 111
• Specifying Primary Keys and Other Constraints for a Table on page 111
• Updating Existing Tables on page 112
• Editing SQL User-Defined Data Types on page 112
• Executing SQL Statements on page 113

Creating SQL Tables
To create a SQL table:

1 In the SQL Tables form, select Actions > New and specify the table name

2 Verify that the schema is dbo.

3 Indicate whether the table includes a multi-site column.

4 Save the record.

5 Click Columns.

6 In the SQL Columns form, add columns for the new table and define metadata about the columns
such as the data type, length, and default value (when applicable to the data type).

7 Save the columns and return to the SQL Tables form.

8 Click New Constraint to open the SQL Tables Constraint form and define one or more primary
keys or other constraints for the table.

See Specifying Primary Keys and Other Constraints for a Table on page 111.

9 To save the constraint and return to the SQL Tables form, click OK.

After you create tables or columns, you can create IDOs, IDO extension classes, or events that use
the tables and columns. You can also filter for a table in the SQL Tables form, and alter the columns
and other attributes.

Infor Mongoose Core Development Guide | 110

Schema (SQL Table and Column) Editing

Note: This application requires certain columns on tables that it uses. If you import a table into your
database, you can filter for it in the SQL Tables form, and then click Update Current Table to add
those required columns.

Maintaining Columns on SQL Tables
Use the SQL Columns form to add, delete, or modify columns on tables. However, you cannot make
changes to certain restricted tables.

See Restricted Tables on page 113.

Caution: You can add, but do not delete or modify columns on existing base application tables. Doing
so can cause system instability.

To add a new column to a table that already contains columns, the new column must meet at least
one of these conditions:

• Allows nulls
• Has a default definition specified
• Is an identity or timestamp data type

If none of these conditions is true, then the column can be added only to an empty table.

You can also change the definition of an existing column, for example, the data type.

Specifying Primary Keys and Other Constraints for a Table
To define one or more primary keys or other constraints:

1 On the SQL Tables form, click one of these buttons:

• To specify a new constraint, click New Constraint. Then specify a Constraint Type and this
related information:

Primary Key
Specify whether the constraint should be implemented with the clustered attribute.

Index
Specify whether the constraint is unique (that is, only one unique combination of the columns
contained in the constraint is permitted in the table) and whether the constraint should be
implemented with the clustered attribute.

Foreign Key
Specify the name of the table to which the current table refers.

• To change an existing constraint, select the constraint from the grid and click Modify Constraint.

The data type and constraint name are displayed.

2 Click Next.

Infor Mongoose Core Development Guide | 111

Schema (SQL Table and Column) Editing

3 In the left pane, select the column or columns you want to be constraints on the table. To add them
to the Keys pane, click Add.

4 Click the Move Up or Move Down buttons to change the order of the columns on the constraint.

5 To delete an existing constraint, remove all columns in the right pane.

6 To save your changes, click Finish.

Updating Existing SQL Tables
Use this method to update a table that you imported into the application database (that is, a table that
was not created with the SQL Tables form).

To prepare an existing table for application access:

1 Select the table on the SQL Tables form.

2 Click Update Current Table.

These actions are performed on the table:

• Add the standard Mongoose-based application columns such as Create Date, Updated By, and
so on

• Create the Delete, Insert and Updatepenultimate triggers
• Add application schema table metadata

Editing SQL User-Defined Data Types
To create or edit data types from the SQL Tables form, click SQL Data Types and then:

1 Select Actions > New.

2 Specify the name, base data type, length and precision (if applicable for your base data type) and
nullability

3 Save the record.

4 Optionally, to change a data type, SQL Server requires that the data type be dropped and recreated.
To drop a data type, it must not be in use by a table, stored procedure, or function. Perform these
steps:

a Filter for the data type and verify that the Where Type Used grid is empty.
b Select Actions > Delete and save the record to drop the data type.
c Select Actions > New, specify the information again, and save the data type record to recreate

it.

Infor Mongoose Core Development Guide | 112

Schema (SQL Table and Column) Editing

Executing SQL Statements
1 From the SQL Tables form, click Apply Database to display a form where you can execute any

SQL statement into the application database.

2 Specify the SQL statement to execute and click Submit.

If your statement includes a "GO" on a line by itself, everything above it is submitted separately to
the database.

Caution: The Apply Database form must be used only by experts.

Restricted Tables
Do not add new custom columns to the following tables, and do not extend them with UETs.
Customizations to these tables are not preserved during upgrades to the application. Asterisks denote
that the table is associated with a form.

• ABOPTS_mst
• ALTCHG_mst
• ALTCHGDTL_mst
• ALTERN_mst
• ** ALTPLAN_mst (Planning Parameters form)
• ** ALTSCHED_mst (Shop Floor Control Parameters form)
• ALTSUM_mst
• APPCFG_mst
• APSSITE_mst
• ATTRIB000_mst
• BATCH000_mst
• BATPROD000_mst
• BATPRODORD000_mst
• BATRL000_mst
• BATSUM000_mst
• BATTIME000_mst
• BATWAIT000_mst
• BOM000_mst
• ** CAL000_mst (Holidays form)
• CONSPLAN000_mst
• DOWN000_mst
• DOWNPLAN000_mst
• EFFECT000_mst
• ERDB_mst
• ERDBGW_mst
• ERRORLOG_mst

Infor Mongoose Core Development Guide | 113

Schema (SQL Table and Column) Editing

• EXRCPT000_mst
• FDBVER_mst
• FIELDS_mst
• GNTHLCAT_mst
• GNTHLCRIT_mst
• GNTSELCAT_mst
• GNTSELMBR_mst
• INVPLAN000_mst
• JOB000_mst
• JOBLNKS000_mst
• JOBPLAN000_mst
• JOBSTEP000_mst
• JS10VR000_mst
• JS11VR000_mst
• JS12VR000_mst
• JS13VR000_mst
• JS14VR000_mst
• JS15VR000_mst
• JS16VR000_mst
• JS17VR000_mst
• JS18VR000_mst
• JS19VR000_mst
• JS2VR000_mst
• JS3VR000_mst
• JS4VR000_mst
• JS6VR000_mst
• JS7VR000_mst
• JS8VR000_mst
• JS9VR000_mst
• JSATTR000_mst
• LOADPERF000_mst
• LOADSUM000_mst
• LOOKUP000_mst
• LSTATUS000_mst
• MATADDQ000_mst
• MATDELOUT000_mst
• MATL000_mst
• MATLALT000_mst
• MATLATTR000_mst
• MATLDELV000_mst
• MATLGRP000_mst
• MATLPBOMS000_mst
• MATLPLAN000_mst
• MATLPPS000_mst

Infor Mongoose Core Development Guide | 114

Schema (SQL Table and Column) Editing

• MATLRULE000_mst
• MATLWHSE000_mst
• MATREMQ000_mst
• MATSCHD000_mst
• MATSUM000_mst
• MSLPLAN000_mst
• OPRULE000_mst
• ORDATTR000_mst
• ORDER000_mst
• ORDGRP000_mst
• ORDIND000_mst
• ORDPERF000_mst
• ORDPLAN000_mst
• ORDSUM000_mst
• OSMATL000_mst
• PART000_mst
• PARTSUM000_mst
• PBOM000_mst
• PBOMMATLS000_mst
• PLANINT000_mst
• PLANMSGS000_mst
• POEXCEPT000_mst
• POLSCHD000_mst
• POOL000_mst
• POOLQ000_mst
• POOLSUM000_mst
• PROBDEF_mst
• PROCPLN000_mst
• RELRECS_mst
• REPPAR_mst
• RESATTR000_mst
• RESLOAD000_mst
• RESMNT000_mst
• RESPAIR000_mst
• RESPLAN000_mst
• RESQ000_mst
• ** RESRC000_mst (Resources form)
• RESSCHD000_mst
• RESSEND000_mst
• RESSUM000_mst
• RGATTR000_mst
• RGLOAD000_mst
• ** RGRP000_mst (Resource Groups form)
• ** RGRPMBR000_mst (Resource Groups form)

Infor Mongoose Core Development Guide | 115

Schema (SQL Table and Column) Editing

• RGRPSUM000_mst
• SCHEDOP000_mst
• ** SHIFT000_mst (Scheduling Shifts form)
• ** SHIFTEXDI000_mst (Resources form, Shift Exceptions tab)
• TBLLIST000_mst
• TODEMAND000_mst
• TOODP000_mst
• TOSUPPLY000_mst
• TRACELOG000_mst
• WAIT000_mst
• WHSE000_mst

SQL Reserved Words
The application reserves the following words that cannot be used aa IDO property names or SQL table
column names:

add

all

alter

and

any

as

asc

authorization

avg

backup

begin

between

break

browse

bulk

by

cascade

case

Infor Mongoose Core Development Guide | 116

Schema (SQL Table and Column) Editing

check

checkpoint

close

clustered

coalesce

column

commit

committed

compute

confirm

constraint

contains

containstable

continue

controlrow

convert

count

create

cross

current

current_date

current_time

current_timestamp

current_user

cursor

database

dbcc

deallocate

declare

default

delete

deny

Infor Mongoose Core Development Guide | 117

Schema (SQL Table and Column) Editing

desc

disk

distinct

distributed

double

drop

dummy

dump

else

end

errlvl

errorexit

escape

except

exec

execute

exists

exit

fetch

file

fillfactor

floppy

for

foreign

freetext

freetexttable

from

full

goto

grant

group

having

Infor Mongoose Core Development Guide | 118

Schema (SQL Table and Column) Editing

holdlock

identity

identity_insert

identitycol

if

in

index

inner

insert

intersect

into

is

isolation

join

key

kill

left

level

like

lineno

load

max

min

mirrorexit

national

nocheck

nonclustered

not

null

nullif

of

off

Infor Mongoose Core Development Guide | 119

Schema (SQL Table and Column) Editing

offsets

on

once

only

open

opendatasource

openquery

openrowset

option

or

order

outer

over

percent

percision

perm

permanent

pipe

plan

prepare

primary

print

privileges

proc

procedure

processexit

public

raiserror

read

readtext

reconfigure

references

Infor Mongoose Core Development Guide | 120

Schema (SQL Table and Column) Editing

repeatable

replication

restore

restrict

return

revoke

right

rollback

rowcount

rowguidcol

rule

save

schema

select

serializable

session_user

set

setuser

shutdown

some

statistics

sum

system_user

table

tape

temp

temporary

textsize

then

to

top

tran

Infor Mongoose Core Development Guide | 121

Schema (SQL Table and Column) Editing

transaction

trigger

truncate

tsequal

uncommitted

union

unique

update

updatetext

use

user

values

varying

view

waitfor

when

where

while

with

work

writetext

Infor Mongoose Core Development Guide | 122

Schema (SQL Table and Column) Editing

Chapter 6: User Extended Tables (UETs)

User Extended Tables Overview
The User Extended Tables (UET) feature gives the system administrator the ability to extend existing
application database tables and add custom user fields to forms in the application. Use this feature to
keep track of information that is not currently in the application database schema.

Note: If you are using replication, you must click the Regenerate Replication Triggers button on the
Replication Management form after UETs are changed, added, or deleted.

Tables are a systematic arrangement of data in records and fields for ready reference. The application
ships with tables containing predetermined fields. The UET feature allows users to add their own fields
to these tables.

Once a table is extended, you can drop user fields into any application form that uses this table.

Note: If you bind a new component to a UET on a form that uses a custom load method stored
procedure, an error message displays when you refresh the form. However, the error does not prevent
you from continuing.

Only the Primary table of the Form's Primary Collection is extendible on that form.

See Finding the Primary Collection for a Form.

When data is entered into pre-existing fields, and if the rule expressions you defined for those fields
are true, the events to arrange and display information in new custom user fields are triggered.

To add new user fields to forms, see Extending Application Database Tables on page 124.

Reports

These reports are available to view information about UET user classes, user fields, user indexes, and
user tables.

Quick Dictionary Report

User Class Report

User Fields Report

User Index Report

Infor Mongoose Core Development Guide | 123

User Extended Tables (UETs)

Associating User Fields with a User Class
To associate user fields with a user class:

1 On the UET Class/Field Relationships form, select a class in the Class Name field.

2 In the Field Name field, select a field name to associate with the class.

3 Click OK to save the relationships and close the form.

Extending Application Database Tables
To add custom user fields to application forms by extending application database tables:

1 Create a user class.

The user class definition is the highest level to extend an application database table.

See Creating a User Class on page 126.

2 Create the user fields.

User fields are generic and can be a part of many classes. If the user changes any property of a
user field, all user classes inherit the change.

See Creating User Fields on page 126.

3 Associate the user fields with the user class.

The UET tools look for this association to place the user fields in the form that belongs to the user
class.

See Associating User Fields with a User Class on page 124.

4 Define the index for the class.

Users who generate their own reports or browse through the classes can take advantage of using
an index. This gives users the ability to define their own sorting process in reports. You do not need
to define the index for a class, but if you do not, and you sort these fields in custom reports,
performance is slowed.

See Defining an Index for a Class on page 127.

5 Create a relationship between an application database table and the user class.

The association between a table and a class provides the information that UET needs to retrieve,
arrange, and display the user fields that belong to a user class. To link the table with the class,
define a rule that determines if the record accessed has a valid user class associated with it. If valid
data is entered in existing fields to make the rule expression true, the new user field displays.

See Creating a Relationship Between a Database Table and a User Class on page 125.

6 Impact the schema.

Use the UET Impact Schema form to apply the changes you made in the previous steps to all
affected databases. This step also updates the corresponding views over multi-site tables.

See Impacting the Schema on page 128.

7 Draw the user fields on forms.

Infor Mongoose Core Development Guide | 124

User Extended Tables (UETs)

Draw the user fields on the forms that have extended tables associated with them. When the user
fields are placed on the form, they act as any other existing field.

See Drawing UET Fields on Forms on page 127.

Copying a User Field
To copy a UET user field:

1 Select a user field to copy on the UET User Fields form.

2 Click Copy Field. TheUET Copy Field form displays.

3 In the Table field, select a table for the new user field.

4 In the Column field, select a column for the new user field.

5 Click OK. You return to the UET User Fields form.

6 Rename the new user field.

7 If desired, change the attributes for the new user field.

Creating a Relationship Between a Database Table
and a User Class
1 Determine the primary table name for the form:

a Open the form to which you want to add a UET field.
b Select Edit > Design Mode.
c If the form properties sheet is not open, select View > Form Properties.
d Select the Collections tab on the property sheet.
e In the collections tree, select the primary collection.
f The Base Table and Alias property shows the primary table name.

Note: Certain tables cannot be extended. See User Extended Tables Overview on page 123.

2 Associate a user class with the application database table:

a On the UET Table/Class Relationships form, select Actions > New.
b In the Table Name field, select the table, as determined above, with which you want to associate

a class.
c In the Class Name field, select a class to associate with the table.
d Select Active to be able to draw user fields on application forms.
e Click Rule Assistant.
f Select a field, an operator and a value for the rule.
g Select OR instead of AND with previous clause if you want to find all records that match one

of the search criteria instead of finding all records that match the search criteria in the previous
clause.

Infor Mongoose Core Development Guide | 125

User Extended Tables (UETs)

h Click Add to add the rule. The rule displays in the (Criteria) field.
i Click OK.

3 Save your changes.

Creating a User Class
1 On the UET Classes form, select Actions > New.

2 Specify a Class Name, Label, and Description for the class.

3 Save the class.

Creating User Fields
To create a user field:

1 On the UET User Fields form, select Actions > New.

2 Specify this information:

User Field Name
Specify a unique name, prefixed with uf, to define a user field.

The uf prefix is not case sensitive, so you can specify something like Uf_Category , uf_Category,
or UF_Category as a user field name.

User Data Type
Select a user data type to define the new user field.

Data Type
Select a standard SQL Server data type for the user field.

Precision
Specify the number of alphanumeric characters that can be entered in the user field.

Decimals
If you selected Decimal in the Data Type field, enter the number of decimal places available in
the user field.

Initial Value
Specify the initial value you wish to display in the user field.

Description
Specify a description of the user field.

3 Save the user field.

Infor Mongoose Core Development Guide | 126

User Extended Tables (UETs)

About User Defined Types
User-defined type refers to a named group of data values that can be used as a list source for a
component. For example, a user-defined type named "Size" could invoke a list of values consisting of
"Small," "Medium," and "Large."

You create user-defined types and add values to them in the User Defined Types form. Value and
Description pairs display in a two-column list for each type that you define. The list of all values for
all user-defined types are included in the User Defined Type Values form.

After a user-defined type is specified as the source for a component that supports lists (a combo box,
for example), users can add values to the type directly through the right-click Add function. In the
example above, a user might add the value "X-Large."

User-defined types are useful with user-extended tables. They can also be used with user-defined
fields. Users can add list-type components to forms without modifying the schema or IDOs or writing
special form code.

Defining an Index for a Class
To define an index for a class:

1 On the UET Class/Index Relationships form, select Actions > New.

2 In the Class Name field, select the name of the class you want to index.

3 In the Index Name field, enter a unique name for the index.

4 In the Description field, enter a description of the index.

5 In the Field Name field, select a user field you want to include in the index.

6 Select Ascending if you want to sort the fields in the index in ascending order.

7 Save the record.

Drawing UET Fields on Forms
To draw UET fields on forms:

1 Open the form to which you want to add a UET field.

2 Select Edit > Design Mode.

3 If the Toolbox is not open, select View>Toolbox.

4 In the Toolbox, click the button that corresponds to the user field you want to create.

5 Click on the form where you want one corner of the field to be and drag diagonally until the field is
the desired size.

6 In the Component properties sheet, specify the properties of the user field.

Infor Mongoose Core Development Guide | 127

User Extended Tables (UETs)

Note: The binding name for a UET user field is object.<Table-Alias><User-Field-Name>. The
Table-Alias is the three-character abbreviation for a table name.

7 SelectForm > Definition > Save.

Impacting the Schema
1 On the UET Impact Schema form, select Commit Form Changes to save the changes you have

made to the form information using the UET forms.

2 Select Impact Schema to change the database schema to contain the columns and indexes
corresponding to the user fields you have defined in the UET forms. Corresponding views over
multi-site tables are also updated.

3 Click Process.

If your system is multi-site and the table where you add the UET, or the corresponding _all table, is
replicating data, there are additional steps you must take. The Replication Reference Guide contains
a chapter on "Setting Up Custom Replication." In it you can find information about copying table schema
changes to other sites.

Infor Mongoose Core Development Guide | 128

User Extended Tables (UETs)

Chapter 7: Critical Numbers

About Critical Numbers
Critical numbers are key performance indicators, or KPIs, that you can use to get a quick view of
important statistics or track progress. Use critical numbers to answer questions like these:

• How am I doing?
• What should I be doing?
• Where are things in jeopardy?

Critical numbers are based on stored procedure calculations or on IDO calculations. With the appropriate
permissions, you can add critical numbers to forms. The system is designed to support both simple
and complex critical numbers to meet a wide range of users and needs.

For example, within the IDO critical number definitions, you can quickly generate numbers based on
this information:

• The sum, count, average, minimum or maximum of a value
• The Group By and Date Range properties
• Comparisons with other properties on the form

You can see the details behind the critical number using an "enhanced drilldown" and do further analysis
on issues you discover.

Where Critical Numbers Can Be Used

More than 100 critical numbers are predefined for your use. You can also create your own critical
numbers.

Critical numbers can be added to any form; the Home forms have several predefined examples. To
add a critical number as a component on a form, you must have access to the form (MGDataViews
license module) and design mode editing permission to add the component.

Critical numbers can also be added as widgets on a user's Start form.

Critical numbers can be surfaced as Infor Ming.le widgets, or used as widgets in the Infor Ming.le
HomePages. Use the User Critical Number Selection form to configure this.

Critical Number Definitions

Before they can be used to display data on a form, critical numbers must be defined. Critical numbers
are defined using the Critical Numbers Setup form. On that form, the basic process is to:

Infor Mongoose Core Development Guide | 129

Critical Numbers

• Specify a source for the data that is to be used.
• Define how the critical number's actual value is to be calculated.
• Determine whether you want to use Goal and Alert settings, and if so, how.

See About Critical Number Goals and Alerts on page 130.

• Optionally, you can also include this information:
• Specify what critical number drilldowns are to be used when the user seeks more information

about how the critical number was calculated and what it means.

See About Critical Number Drilldowns on page 142.

• Determine what groups and users will have access to the critical number data, using critical
number categories and individual user or group assignments.

Viewing a critical number is controlled by the permissions set for the specific number. User or
group permissions can be set for a category of critical numbers on the Critical Number Category
form, or user permissions can be set for a specific number on the Critical Number Setup form.

• Define critical number parameters and how they will be used in critical number calculations and
displays.

See Setting Up a Critical Number Drilldown on page 142.

• Determine and set up filters to be used in retrieving critical number data.

See Setting Up a Critical Number/Drilldown IDO Filter on page 149.

• Specify whether "snapshots" of critical number values should be captured whenever the critical
number is queried for.

See About Critical Number Snapshots on page 140.

For the complete procedure to define a critical number, see Defining a Critical Number on page 131.

Goal and Alert Settings

Critical numbers are color-coded to show their goal and alert status. These colors are used by default:

• Red: The value of the number is in the alert or critical range.
• Yellow: The value of the number is in the warning range.
• Green: The value of the number is within the normal or ideal range.
• Gray: The number represents an "informational" value only.

You can change these colors. Use themes to do this.

About Critical Number Goals and Alerts
Goals and alerts are used in Critical Numbers to determine how the critical number displays are
presented and interpreted. Goal and alert settings indicate thresholds that can be used to indicate
when goals are being met, when goals are in jeopardy, and when goals are not being met.

• Goals: Anything in the "Goal" range is considered good and by default is displayed using a green
color.

• Alerts: Anything in the "Alert range is considered bad and by default is displayed using a red color.

Infor Mongoose Core Development Guide | 130

Critical Numbers

• Warnings: When both Goal and Alert settings have been defined, a "warning" range is generated
automatically between them. This range by default is displayed using a yellow color.

If you choose to use a Goal setting without a corresponding Alert setting, anything not in the
acceptable (goal) range is considered a Warning.

If you choose to use an Alert setting without a corresponding Goal setting, anything not in the
unacceptable (alert) range is considered a Warning.

• Informational displays: When neither a Goal nor an Alert setting has been defined, the Critical
Number display is considered to be informational only. Informational numbers are values that you
want to monitor but not set thresholds against. By default, informational displays use a gray color.

You can change the default colors for each of these types of critical number values, by using themes.

When using email generation with Critical Numbers, you can choose which of these four states (Goal,
Alert, Warning, Informational) is to generate emails to appropriate individuals, using the Email
Generation form.

Defining a Critical Number
Critical numbers help users track how they are doing. Critical numbers can be based on a stored
procedure calculation or on an IDO calculation.

Custom critical numbers inherit the same security restrictions as the preconfigured numbers.

To define a critical number:

1 Open the Critical Numbers Setup form and execute Filter In Place.

2 To create a critical number from scratch, select Actions > New; or to create critical number from
an existing one, copy and modify the existing critical number.

3 Specify this information:

Critical Number
Required. This must be a unique integer. If you do not specify an integer here, the system
automatically assigns the next available integer.

Active
When selected (the default), this option activates the critical number and makes it functional. When
cleared, this option deactivates the critical number.

Snapshot
Select this option to keep a snapshot history of the critical number.

Description
Optional. Specify a description of the critical number: what it represents, or how it is intended to be
used. The value in this field is used as the caption on any gauges, etc. used to display the critical
number's value.

Infor Mongoose Core Development Guide | 131

Critical Numbers

Short Desc.
Optional. Specify a shorter description that the system can use in the Subject line of e-mails related
to it.

Result Divisor
If the critical number is expected to return and display large values, and you want to divide those
values before displaying them, specify the number by which to divide the value before it is displayed.

For example, if you expect the numbers to be retrieve to have values in the millions, such as
120,000,000, you can set this field to one million (1,000,000), and the resulting display shows that
value as 120. In a case like this, you would want to set the Description field to (in millions)
to clarify what value the number (120) actually represents.

4 On theGeneral tab, specify the source, optional calculations, alert values to use, and goals to apply.

For more information, see the topic Making Critical Number General Tab Settings.

5 Optionally, use the Drilldowns tab to assign drilldowns to be used for this critical number.

Drilldowns are defined on theDrilldowns Setup form.

6 Optionally, use the Categories tab to assign the critical number to one or more categories.

For more information, see Critical Number Categories.

7 Optionally, use the Users tab to assign (or deny) permissions to individual users.

8 Optionally, use the Groups tab to assign (or deny) permissions to groups.

9 Optionally, use the Static Parameters tab to define name-value pairs that are used to allow end
users to change critical number values without modifying the source code.

Note: Static parameter options are most effective when the source of data for the critical number
is a stored procedure. When the data source is an IDO, the same end is accomplished much more
easily using filters.

10 Optionally, use the Input Parameters tab to define and list filters that are used to determine what
information the critical number is based on.

The Sequence number determines the order in which the IDO properties are evaluated during a
critical number query. This data provides readable labels for the stored procedure parameters
throughout the system.

11 Optionally, use the Snapshots tab to view a snapshot history of this critical number.

From this tab, you can launch the Critical Number Snapshots form to view details of the snapshots
for the selected critical number.

You can also export the snapshot data to a CSV (comma-separated values) file that you can open
in a spreadsheet application.

12 Save your changes.

Infor Mongoose Core Development Guide | 132

Critical Numbers

Setting Up Critical Number Parameters
Use the fields on the Critical Number Parameters form to set up parameters and values that are
generic to all critical numbers, and global settings:

1 On the General tab, specify this information:

Alert Symbol
The default character is a capital X.

Warning Symbol
Specify a character to display on warning-related e-mails that are automatically generated. The
default character is a minus symbol (-).

Goal Symbol
Specify a character to display on Goal-related e-mails that are automatically generated. The default
character is a plus sign (+).

Load Batch Size
Specify the maximum number of records to be pulled at once from the database when the system
retrieves data for Critical Number Drilldowns and DataViews. This setting does not prevent you
from retrieving more records, it simply controls the batch size. So, if you want 12,500 records, and
this option is set to 5,000, it requires three rounds of queries, instead of one, to retrieve the entire
number of records (5,000 + 5,000 + 2,500).

2 On the Global tab, specify user definable settings that are used for multiple critical numbers.

Note: If the numbers are specific to a critical number, we recommend that you assign those to the
individual critical number with which they are associated.

Setting Up Multiple Results for One Critical Number
For processes that run through a large amount of data, you can create multiple results for one critical
number calculation.

Multiple Results for an IDO-based Critical Number

To set up multiple results for an IDO-based critical number:

• Build an IDO-based critical number.

See Creating Critical Numbers on page 131.

• To generate multiple results, select values for the Group By or Date Property fields.

Infor Mongoose Core Development Guide | 133

Critical Numbers

Multiple Results for a Stored Procedure-based Critical Number

Generating multiple results with the stored procedure-based critical numbers is more complex. The
preconfigured AR Age critical number is an example of one record that can be set up to create hundreds
of other numbers, when programmed correctly.

To set up multiple results for a stored procedure-based critical number:

• Build the stored procedure-based critical number.

See Creating Critical Numbers on page 131.

Note: Consider using static parameters to set up the Goal Value and Alert Value, and other settings
for each record you want to create. For example, the AR Age number uses Alert-1, Alert-2,
Alert-3€¦.Alert-7, Goal-1, Goal-2, Goal-3...Goal-7, Bucket-1, Bucket-2...Bucket-7. This ensures that
the values are not hard-coded and the end-user can change them without modifying the stored
procedure.

• Write your routine as you do others, but instead of assigning only @Actual, you must create all the
#tt_cr_nums records that you want to include. Call the standard procedure WBLoadCrAddSp to
accomplish this:

CREATE PROCEDURE dbo.WBLoadCrAddSp (@KPINum WBKPINumType, @Cate
gory WBCategoryType
, @Id nvarchar(500)
, @Amount AmountType
, @Description NVARCHAR(500)
, @GoalVal AmountType = NULL
, @AlertVal AmountType = NULL
, @MessageTxt Infobar = NULL
, @GoalOper WBOperatorType = NULL
, @AlertOper WBOperatorType = NULL
) AS

Notes

Because the results have the same critical number, set the Id to distinguish the numbers. The Id is
passed to the drilldown so you can view the appropriate information.

GoalVal and AlertVal are optional. The system uses the values from the Critical Number Setup form
if you do not override them.

Stored Procedure Critical Number Examples
Setting up a program to create a simple critical number is relatively easy.

The first step is to set up your critical number in the Critical Numbers form.

• Choose a program name for your custom stored procedure. We recommend that you create a
naming convention for your custom procedures so they do not conflict with current or future
procedures; using a prefix that includes your company name is one way to do this.

Infor Mongoose Core Development Guide | 134

Critical Numbers

• Choose the parameters you want to be able to set without changing the values in the code. Careful
planning of parameter definitions can make the same program usable for multiple critical numbers
you want to retrieve. For example, you can set a specific buyer's id or make the same program run
against three different warehouses.

• Keep in mind that you can override any and all settings on this form in your code.

Next, open Query Analyzer or your preferred editor and create your custom stored procedure. The
parameters of every critical number are the same and need to look like this (where
SSSWBCanCoBookSp is the name of your procedure):

CREATE PROCEDURE [dbo].[SSSWBCanCoBookSp] (
 @KPINum WBKPINumType
, @AsOfDate DateType
, @Amount AmountType OUTPUT
, @Parm1 WBSourceNameType = NULL
, @Parm2 WBSourceNameType = NULL
, @Parm3 WBSourceNameType = NULL
, @Parm4 WBSourceNameType = NULL
, @Parm5 WBSourceNameType = NULL
, @Parm6 WBSourceNameType = NULL
, @Parm7 WBSourceNameType = NULL
, @Parm8 WBSourceNameType = NULL
, @Parm9 WBSourceNameType = NULL
, @Parm10 WBSourceNameType = NULL
, @Parm11 WBSourceNameType = NULL
, @Parm12 WBSourceNameType = NULL
, @Parm13 WBSourceNameType = NULL
, @Parm14 WBSourceNameType = NULL
, @Parm15 WBSourceNameType = NULL
, @Parm16 WBSourceNameType = NULL
, @Parm17 WBSourceNameType = NULL
, @Parm18 WBSourceNameType = NULL
, @Parm19 WBSourceNameType = NULL
, @Parm20 WBSourceNameType = NULL
, @Parm21 WBSourceNameType = NULL
, @Parm22 WBSourceNameType = NULL
, @Parm23 WBSourceNameType = NULL
, @Parm24 WBSourceNameType = NULL
, @Parm25 WBSourceNameType = NULL
, @Parm26 WBSourceNameType = NULL
, @Parm27 WBSourceNameType = NULL
, @Parm28 WBSourceNameType = NULL
, @Parm29 WBSourceNameType = NULL
, @Parm30 WBSourceNameType = NULL
, @Parm31 WBSourceNameType = NULL
, @Parm32 WBSourceNameType = NULL
, @Parm33 WBSourceNameType = NULL
, @Parm34 WBSourceNameType = NULL
, @Parm35 WBSourceNameType = NULL
, @Parm36 WBSourceNameType = NULL
, @Parm37 WBSourceNameType = NULL
, @Parm38 WBSourceNameType = NULL
, @Parm39 WBSourceNameType = NULL
, @Parm40 WBSourceNameType = NULL

Infor Mongoose Core Development Guide | 135

Critical Numbers

, @Parm41 WBSourceNameType = NULL
, @Parm42 WBSourceNameType = NULL
, @Parm43 WBSourceNameType = NULL
, @Parm44 WBSourceNameType = NULL
, @Parm45 WBSourceNameType = NULL
, @Parm46 WBSourceNameType = NULL
, @Parm47 WBSourceNameType = NULL
, @Parm48 WBSourceNameType = NULL
, @Parm49 WBSourceNameType = NULL
, @Parm50 WBSourceNameType = NULL
) AS

Write the logic to calculate your value and assign it to @Amount. The amount is returned to be displayed
to the user.

In order to retrieve any parameters that you may have set up, you can call a standard function. It is
dbo.WBGetParm. Pass in the critical number you are dealing with (@KPINum), and the parameter you
want to retrieve. The parameter is looked for first in that specific critical number, and then in the general
listing on the Critical Number Parameters form. To retrieve a parameter called "Acct" and set it into
a variable in your stored procedure, do the following:

Past Due Order Lines Example

CREATE PROCEDURE SSSWBCanCoitemPastDueSp (
 @KPINum WBKPINumType
, @AsOfDate DateType
, @Amount AmountType OUTPUT
, @Parm1 WBSourceNameType = NULL
, @Parm2 WBSourceNameType = NULL
, @Parm3 WBSourceNameType = NULL
, @Parm4 WBSourceNameType = NULL
, @Parm5 WBSourceNameType = NULL
, @Parm6 WBSourceNameType = NULL
, @Parm7 WBSourceNameType = NULL
, @Parm8 WBSourceNameType = NULL
, @Parm9 WBSourceNameType = NULL
, @Parm10 WBSourceNameType = NULL
, @Parm11 WBSourceNameType = NULL
, @Parm12 WBSourceNameType = NULL
, @Parm13 WBSourceNameType = NULL
, @Parm14 WBSourceNameType = NULL
, @Parm15 WBSourceNameType = NULL
, @Parm16 WBSourceNameType = NULL
, @Parm17 WBSourceNameType = NULL
, @Parm18 WBSourceNameType = NULL
, @Parm19 WBSourceNameType = NULL
, @Parm20 WBSourceNameType = NULL
, @Parm21 WBSourceNameType = NULL
, @Parm22 WBSourceNameType = NULL
, @Parm23 WBSourceNameType = NULL
, @Parm24 WBSourceNameType = NULL
, @Parm25 WBSourceNameType = NULL
, @Parm26 WBSourceNameType = NULL
, @Parm27 WBSourceNameType = NULL

Infor Mongoose Core Development Guide | 136

Critical Numbers

, @Parm28 WBSourceNameType = NULL
, @Parm29 WBSourceNameType = NULL
, @Parm30 WBSourceNameType = NULL
, @Parm31 WBSourceNameType = NULL
, @Parm32 WBSourceNameType = NULL
, @Parm33 WBSourceNameType = NULL
, @Parm34 WBSourceNameType = NULL
, @Parm35 WBSourceNameType = NULL
, @Parm36 WBSourceNameType = NULL
, @Parm37 WBSourceNameType = NULL
, @Parm38 WBSourceNameType = NULL
, @Parm39 WBSourceNameType = NULL
, @Parm40 WBSourceNameType = NULL
, @Parm41 WBSourceNameType = NULL
, @Parm42 WBSourceNameType = NULL
, @Parm43 WBSourceNameType = NULL
, @Parm44 WBSourceNameType = NULL
, @Parm45 WBSourceNameType = NULL
, @Parm46 WBSourceNameType = NULL
, @Parm47 WBSourceNameType = NULL
, @Parm48 WBSourceNameType = NULL
, @Parm49 WBSourceNameType = NULL
, @Parm50 WBSourceNameType = NULL
) AS
DECLARE @CoStatList LongListType
, @CoitemStatList LongListType
, @CredHold ListYesNoType
, @LateDays GenericIntType
, @QtyDue QtyUnitType
, @OrdTotal AmountType
, @ParmsSite SiteType
, @CustNum CustNumType
, @CoNum CoNumType
, @LineFilter CoLineType
, @ItemFilter ItemType
, @ProdCodeFilter ProductCodeType
, @WhseFilter WhseType
, @StatFilter CoitemStatusType
SELECT @ParmsSite = site
FROM parms
SET @CoStatList = ISNULL(dbo.WBGetParm(@CrNum, 'COStatusList'), 'POS')
SET @CoitemStatList = ISNULL(dbo.WBGetParm(@CrNum, 'COITEMStatusList'),
'PO')
SET @CredHold = ISNULL(dbo.WBGetParm(@CrNum, 'CredHold'), 0)
SET @LateDays = ISNULL(dbo.WBGetParm(@CrNum, 'LateDaysTolerance'),
 0)
SET @CustNum = dbo.ExpandKyByType('CustNumType', @Parm1)
SET @CoNum = dbo.ExpandKyByType('CoNumType', @Parm2)
SET @LineFilter = NULLIF(@Parm3, '')
SET @ItemFilter = NULLIF(@Parm4, '')
SET @ProdCodeFilter = NULLIF(@Parm5, '')
SET @WhseFilter = NULLIF(@Parm6, '')
SET @StatFilter = NULLIF(@Parm7, '')
SELECT @Amount = COUNT(*)
FROM coitem
LEFT OUTER JOIN item itm

Infor Mongoose Core Development Guide | 137

Critical Numbers

 ON itm.item = coitem.item
WHERE (@CoNum IS NULL OR co_num = @CoNum)
 AND charindex(coitem.stat, @CoitemStatList) > 0
 AND qty_ordered > qty_shipped
 AND ISNULL(due_date, '1900-01-01') >= dateadd(dd, @LateDays, @AsOfDate)
 AND ship_site = @ParmsSite
 AND EXISTS (SELECT 1 FROM co
 WHERE (@CustNum IS NULL OR co.cust_num = @CustNum)
 AND co.co_num = coitem.co_num
 AND charindex(co.stat, @CoStatList) > 0
 AND co.credit_hold = @CredHold
)
 AND (@LineFilter IS NULL OR coitem.co_line = @LineFilter)
 AND (@ItemFilter IS NULL OR coitem.item = @ItemFilter)
 AND (@ProdCodeFilter IS NULL OR itm.product_code = @ProdCodeFilter)
 AND EXISTS (SELECT 1 FROM co
 WHERE (@WhseFilter IS NULL OR co.whse = @WhseFilter)
 AND (@StatFilter IS NULL OR co.stat = @StatFilter)
 AND co.co_num = coitem.co_num)

RETURN 0

Changing Critical Number Display Settings
Use the Critical Number Display Settings modal form to change the display settings of a critical
number gauge.

Note:
• You can reach this form only by selecting the Display Settings option from the right-click menu of

a critical number gauge display.
• Settings made on this form do not become part of the form definition. If you want to persist any

changes beyond the current use/instance of the form, you must go into Design Mode and save them
as part of the form definition.

To change the settings:

1 Right-click on any critical number gauge, and select Display Settings.

2 Use these fields to change any settings:

Description / CommentsField

This field displays the ID number for the critical number value displayed in
this gauge.

You can, if you wish, select a different critical number for which to display
data.

Critical Number

Infor Mongoose Core Development Guide | 138

Critical Numbers

Description / CommentsField

Use this field to specify a date range for which to retrieve data:

• All Dates
• YTD (Year-to-date)
• PTD (Period-to-date)

Note: By default, a period is defined as one month.
• WTD (Week-to-date)

Date Range

This field indicates what groups, if any, the critical number is assigned to.

Note: If the critical number is configured to "Group By" some value, then the
specific group can be specified in this field. So, for example, if you have the
critical number set to display results by state, you might have one gauge set
to display sales in Indiana and another gauge set to display sales in Ohio.
You would then use this field to specify which gauge displays the results for
which state.

Group

Use this field to specify a starting date for the data being retrieved and dis-
played.

As Of Date

Use this field to specify the drilldown to be used with this critical number dis-
play.

Drilldown

Use this field to specify what type of gauge display is to be presented to the
user.

Gauge Type

Use this field to change the upper or lower limit of the Goal range (depending
on how the critical number is set up).

Note: You cannot use operators in conjunction with the numbers in this field,
only numbers or expressions that resolve to number values. For example,
something like >=500 would not be a valid value here. On the other hand,
P(GoalValue) could be a valid value, as long as the value of the GoalValue
property is a number.

Goal Value

Use this field to change the upper or lower limit of the Alert range (depending
on how the critical number is set up).

Note: You cannot use operators in conjunction with the numbers in this field,
only numbers or expressions that resolve to number values. For example,
something like >=500 would not be a valid value here. On the other hand,
P(GoalValue) could be a valid value, as long as the value of the GoalValue
property is a number.

Alert Value

Infor Mongoose Core Development Guide | 139

Critical Numbers

Description / CommentsField

Specify the format to use for the gauge caption:

• Long: The caption for the gauge displays the contents of the Description
field on the Critical Numbers Setup form.

• Short: The caption for the gauge displays the contents of the Short Desc
field on the Critical Numbers Setup form.

• Default: The type of caption that the gauge displays depends on the
type of gauge being displayed. This option uses the gauge type to deter-
mine whether to use the Description or the Short Desc value. Some
gauge types like Thermometer and Vertical LED are naturally narrow, so
they use the Short Desc value by default. Other gauges, like the Horizontal
Linear Gauge, are naturally wider, so they use the Description value by
default.

• None: No caption displays.

Caption Format

Specify which format to use for the gauge sub-caption:

• All: This option displays the Goal setting, if used; the Alert setting, if
used; and the Actual value of the critical number. Each value is labeled
separately.

• Actual: This option displays only the actual value of the critical number,
with no label.

• None: This option causes no sub-caption to be displayed at all.

Sub-Caption For-
mat

This read-only field displays the description for the critical number (usually
like a title), as specified on the General tab of the Critical Numbers Setup
form. This is also the same value used for a "Long" caption for the gauge
display.

Description

This read-only field displays the calculation definition as specified on the
General tab of the Critical Numbers Setup form.

Calculation Defini-
tion

3 To save your changes and see the resulting display on the critical number gauge display, click OK.

About Critical Number Snapshots
Critical number snapshots are used to provide a history of critical numbers and show whether the
numbers are improving. You can set snapshots to run in the background queue or run them any time
using the Snapshot Generation utility.

You can export the list of snapshots to create charts and graphs using the Critical Numbers Setup
form.

This information is displayed on the Critical Number Snapshots form:

• The critical number category, ID, and description
• The date that the "snapshot" was taken

Infor Mongoose Core Development Guide | 140

Critical Numbers

• The actual (calculated) value of the critical number
• Whether the Alert option is selected and if so, a description of the alert range
• Whether the Goal option is selected and if so, a description of the goal value
• Whether a symbol is used to show how the actual value of the critical number compares to the goal

and alert values set up for that number

Generating a Critical Number Snapshot
1 Open the Snapshot Generation form.

2 Select an As of date to determine when the calculation of the critical number begins.

3 Optionally, select Append to Current Day to add the snapshot to an existing list of critical numbers.

If you do not select this check box, the new snapshot replaces any existing snapshots.

4 ClickProcess to run the generation.

Infor Mongoose Core Development Guide | 141

Critical Numbers

Chapter 8: Critical Number Drilldowns

About Critical Number Drilldowns
Because a critical number shows only one result value, it is often necessary to access the detailed
records that comprise the results. You can configure critical number drilldowns to return a set of data.
For example, you can set up a drilldown for the inventory value critical number to view the items in the
inventory, and the item warehouse, location, and value.

Like critical numbers, drilldowns can be configured to use IDOs or stored procedures.

Typically, the IDO and filter used on the Critical Numbers Setup form are the same primary IDO and
filter used when defining the drilldown. However, additional tables and IDOs might need to be referenced
in the drilldown to provide user-readable output.

A critical number drilldown is displayed in a DataView. As with other DataViews, you can manipulate
the data and save layouts, whether you activate the drilldown from a critical number control or from
the Critical Numbers form.

Setting Up a Critical Number Drilldown
The procedure to set up a critical number drilldown depends on the source for the critical number:

• For IDO-based drilldowns, see Setting Up an IDO Critical Number Drilldown on page 148.
• For stored procedure-based drilldowns, see Setting Up a Stored Procedure Critical Number Drilldown

on page 142.

Setting Up a Stored Procedure Critical Number
Drilldown
You can set up a drilldown for a critical number based on a stored procedure either by creating one
new or by copying an existing one and then modifying it.

To set up a drilldown for a critical number based on a stored procedure:

Infor Mongoose Core Development Guide | 142

Critical Number Drilldowns

1 Open theDrilldowns Setup form and execute Filter In Place.

2 In the Drilldown field, specify an unused integer to identify the drilldown.

If you do not specify an integer here, the system automatically assigns the next available integer.

3 In the Description field, provide a descriptive name by which the drilldown and its use can be easily
identified.

4 On the General tab, make the basic specifications for the drilldown.

For more information, see Making General Tab Settings for a Drilldown.

5 Optionally, use the Output Columns tab to rearrange the order in which the output is to be displayed
and the captions to be displayed for those columns.

The data that is displayed on this tab is derived from the stored procedure identified in Step 4.

For more information, see Setting Up Stored Procedure-based Drilldowns - Output Columns Tab.

6 Optionally, use the Categories tab to specify one or more categories to which the drilldown belongs.

When you select a category, the Category Description field is populated automatically.

For more information, see Critical Number Categories.

7 Optionally, use the Sub Drilldowns tab to specify one or more sub-drilldowns to use in conjunction
with the selected drilldown.

For more information, see Setting up a Sub-Drilldown Based on a Stored Procedure on page 150.

8 Optionally, use the Static Parameters tab to specify one or more name-value pairs

Note:

If the data needs to be refined by a hard-coded list of values, we recommend that you assign the
name and value on this tab. You can then reference the static parameters when you set up the
critical number/drilldown filter using the CRPARM() syntax.

For example, a critical number based on an Account Balance stored procedure might have a static
parameter called Acct. This tells the stored procedure which account number to use. The number
that ships with the product uses 10000 (cash), but users can change this value if they want to monitor
a different account or if their cash account uses a different account number.

9 Optionally, use the Input Parameters tab to provide values that can be used in processing
sub-drilldowns, especially.

10 Associate the drilldown with a critical number:

• Launch the Critical Numbers Setup form and navigate to the critical number.
• On the Drilldowns tab, select the new drilldown and specify a description.
• Save the record.

11 Create your stored procedure in your preferred code editor.

The parameters for a drilldown are slightly different from a critical number, as shown in this example:

CREATE PROCEDURE WBCanCoitemPastDueDetailsSp (
 @AsOfDate DateType
, @DrillNum WBDrillNumType
, @KPINum WBKPINumType
, @Id nvarchar(500)
, @Parm1 WBSourceNameType

Infor Mongoose Core Development Guide | 143

Critical Number Drilldowns

, @Parm2 WBSourceNameType
, @Parm3 WBSourceNameType
, @Parm4 WBSourceNameType
, @Parm5 WBSourceNameType
, @Parm6 WBSourceNameType
, @Parm7 WBSourceNameType
, @Parm8 WBSourceNameType
, @Parm9 WBSourceNameType
, @Parm10 WBSourceNameType
, @Parm11 WBSourceNameType
, @Parm12 WBSourceNameType
, @Parm13 WBSourceNameType
, @Parm14 WBSourceNameType
, @Parm15 WBSourceNameType
, @Parm16 WBSourceNameType
, @Parm17 WBSourceNameType
, @Parm18 WBSourceNameType
, @Parm19 WBSourceNameType
, @Parm20 WBSourceNameType
, @Parm21 WBSourceNameType
, @Parm22 WBSourceNameType
, @Parm23 WBSourceNameType
, @Parm24 WBSourceNameType
, @Parm25 WBSourceNameType
, @Parm26 WBSourceNameType
, @Parm27 WBSourceNameType
, @Parm28 WBSourceNameType
, @Parm29 WBSourceNameType
, @Parm30 WBSourceNameType
, @Parm31 WBSourceNameType
, @Parm32 WBSourceNameType
, @Parm33 WBSourceNameType
, @Parm34 WBSourceNameType
, @Parm35 WBSourceNameType
, @Parm36 WBSourceNameType
, @Parm37 WBSourceNameType
, @Parm38 WBSourceNameType
, @Parm39 WBSourceNameType
, @Parm40 WBSourceNameType
, @Parm41 WBSourceNameType
, @Parm42 WBSourceNameType
, @Parm43 WBSourceNameType
, @Parm44 WBSourceNameType
, @Parm45 WBSourceNameType
, @Parm46 WBSourceNameType
, @Parm47 WBSourceNameType
, @Parm48 WBSourceNameType
, @Parm49 WBSourceNameType
, @Parm50 WBSourceNameType
) AS

Records are returned to the user through the WBTmpDrilldowns temporary table. The columns that
you set in this temporary table correspond to the columns you set up on the Output Columns tab

Infor Mongoose Core Development Guide | 144

Critical Number Drilldowns

on the Drilldowns Setup form. If you specified a Detail form on the Drilldowns Setup form and
you want to see details on the specific record, set the RowPointer, as shown in this example:

INSERT INTO WBTmpDrilldowns(
 RefRowPointer
, DATE01
, CHAR01
, INTE01
, CHAR02
, CHAR03
, SessionID
)
SELECT
 coitem.RowPointer
, coitem.due_date
, co.co_num
, coitem.co_line
, co.cust_num
, custaddr.name
, @SessionID
FROM coitem
INNER JOIN co
 ON co.co_num = coitem.co_num
LEFT OUTER JOIN custaddr
 ON custaddr.cust_num = co.cust_num
 AND custaddr.cust_seq = co.cust_seq
LEFT OUTER JOIN item itm
 ON itm.item = coitem.item
WHERE co.cust_num = ISNULL(NULLIF(@CustNum,''), co.cust_num)
 AND co.co_num = ISNULL(NULLIF(@CoNum,''), co.co_num)
 AND charindex(coitem.stat, @CoitemStatList) > 0
 AND qty_ordered > qty_shipped
 AND ISNULL(due_date, '1900-01-01') = dateadd(dd,="" @latedays,=""
@asofdate)="" and="" ship_site="@ParmsSite" charindex(co.stat,=""
@costatlist)=""> 0
 AND co.credit_hold = @CredHold
 AND (@LineFilter IS NULL OR coitem.co_line = @LineFilter)
 AND (@ItemFilter IS NULL OR coitem.item = @ItemFilter)
 AND (@ProdCodeFilter IS NULL OR itm.product_code = @ProdCodeFilter)
 AND (@WhseFilter IS NULL OR co.whse = @WhseFilter)
 AND (@StatFilter IS NULL OR co.stat = @StatFilter)

12 You can set these additional values in the WBTmpDrilldowns table to affect what is displayed in the
drilldown:

• RowPointer provides a link to the specific record when launching a detail form.
• GoalValue overrides the Goal Value from the Drilldowns Setup form.
• AlertValue overrides the Alert Value from the Drilldowns Setup form.

This example shows Customer Order Past Due:

CREATE PROCEDURE WBCanCoitemPastDueDetailsSp (

Infor Mongoose Core Development Guide | 145

Critical Number Drilldowns

 @AsOfDate DateType
, @DrillNum WBDrillNumType
, @KPINum WBKPINumType
, @Id nvarchar(500)
, @Parm1 WBSourceNameType
, @Parm2 WBSourceNameType
, @Parm3 WBSourceNameType
, @Parm4 WBSourceNameType
, @Parm5 WBSourceNameType
, @Parm6 WBSourceNameType
, @Parm7 WBSourceNameType
, @Parm8 WBSourceNameType
, @Parm9 WBSourceNameType
, @Parm10 WBSourceNameType
, @Parm11 WBSourceNameType
, @Parm12 WBSourceNameType
, @Parm13 WBSourceNameType
, @Parm14 WBSourceNameType
, @Parm15 WBSourceNameType
, @Parm16 WBSourceNameType
, @Parm17 WBSourceNameType
, @Parm18 WBSourceNameType
, @Parm19 WBSourceNameType
, @Parm20 WBSourceNameType
, @Parm21 WBSourceNameType
, @Parm22 WBSourceNameType
, @Parm23 WBSourceNameType
, @Parm24 WBSourceNameType
, @Parm25 WBSourceNameType
, @Parm26 WBSourceNameType
, @Parm27 WBSourceNameType
, @Parm28 WBSourceNameType
, @Parm29 WBSourceNameType
, @Parm30 WBSourceNameType
, @Parm31 WBSourceNameType
, @Parm32 WBSourceNameType
, @Parm33 WBSourceNameType
, @Parm34 WBSourceNameType
, @Parm35 WBSourceNameType
, @Parm36 WBSourceNameType
, @Parm37 WBSourceNameType
, @Parm38 WBSourceNameType
, @Parm39 WBSourceNameType
, @Parm40 WBSourceNameType
, @Parm41 WBSourceNameType
, @Parm42 WBSourceNameType
, @Parm43 WBSourceNameType
, @Parm44 WBSourceNameType
, @Parm45 WBSourceNameType
, @Parm46 WBSourceNameType
, @Parm47 WBSourceNameType
, @Parm48 WBSourceNameType
, @Parm49 WBSourceNameType
, @Parm50 WBSourceNameType
) AS

Infor Mongoose Core Development Guide | 146

Critical Number Drilldowns

DECLARE @Severity INT
, @CoNum CoNumType
, @CustNum CustNumType
, @ParmsSite SiteType
, @CoStatList LongListType
, @CoitemStatList LongListType
, @CredHold ListYesNoType
, @LateDays INT
, @LineFilter CoLineType
, @ItemFilter ItemType
, @ProdCodeFilter ProductCodeType
, @WhseFilter WhseType
, @StatFilter CoitemStatusType
, @SessionID RowPointerType
SET @Severity = 0
SET @LateDays = 0
SET @SessionId = dbo.SessionIdSp()
SET @CustNum = dbo.ExpandKyByType('CustNumType', @Parm1) SET @CoNum =
dbo.ExpandKyByType('CoNumType', @Parm2) SET @LineFilter = NULLIF(@Parm3,
 '') SET @ItemFilter = NULLIF(@Parm4, '') SET @ProdCodeFilter = NUL
LIF(@Parm5, '') SET @WhseFilter = NULLIF(@Parm6, '') SET @StatFilter =
NULLIF(@Parm7, '')
IF @CoNum IS NULL AND @LineFilter IS NOT NULL
 SET @LineFilter = NULL
SELECT @ParmsSite = site
FROM parms
SET @CoStatList = ISNULL(dbo.WBGetDrillParm(@DrillNum, @KPINum,
'COStatusList'), 'POS')
SET @CoitemStatList = ISNULL(dbo.WBGetDrillParm(@DrillNum, @KPINum,
'COITEMStatusList'), 'PO')
SET @CredHold = ISNULL(dbo.WBGetDrillParm(@DrillNum, @KPINum,
'CredHold'), 0)
SET @LateDays = ISNULL(dbo.WBGetDrillParm(@DrillNum, @KPINum,
'LateDaysTolerance'), 0)
INSERT INTO WBTmpDrilldowns(
 RefRowPointer
, DATE01
, CHAR01
, INTE01
, CHAR02
, CHAR03
, SessionID
)
SELECT
 coitem.RowPointer
, coitem.due_date
, co.co_num
, coitem.co_line
, co.cust_num
, custaddr.name
, @SessionID
FROM coitem
INNER JOIN co
 ON co.co_num = coitem.co_num
LEFT OUTER JOIN custaddr

Infor Mongoose Core Development Guide | 147

Critical Number Drilldowns

 ON custaddr.cust_num = co.cust_num
 AND custaddr.cust_seq = co.cust_seq
LEFT OUTER JOIN item itm
 ON itm.item = coitem.item
WHERE co.cust_num = ISNULL(NULLIF(@CustNum,''), co.cust_num)
 AND co.co_num = ISNULL(NULLIF(@CoNum,''), co.co_num)
 AND charindex(coitem.stat, @CoitemStatList) > 0
 AND qty_ordered > qty_shipped
 AND ISNULL(due_date, '1900-01-01') = dateadd(dd,="" @latedays,=""
@asofdate)="" and="" ship_site="@ParmsSite" charindex(co.stat,=""
@costatlist)="" 0
 AND co.credit_hold = @CredHold
 AND (@LineFilter IS NULL OR coitem.co_line = @LineFilter)
 AND (@ItemFilter IS NULL OR coitem.item = @ItemFilter)
 AND (@ProdCodeFilter IS NULL OR itm.product_code = @ProdCodeFilter)
 AND (@WhseFilter IS NULL OR co.whse = @WhseFilter)
 AND (@StatFilter IS NULL OR co.stat = @StatFilter)
RETURN @Severity

Setting Up an IDO Critical Number Drilldown
You can set up a drilldown for an IDO-based critical number either by creating one new or by copying
an existing one and then modifying it.

1 Open the Drilldowns Setup form and execute Filter In Place.

2 In the Drilldown field, specify an unused integer to identify the drilldown. If you do not specify an
integer here, the system automatically assigns the next available integer.

3 In the Description field, provide a descriptive name by which the drilldown and its use can be easily
identified.

4 On the General tab, make the basic specifications for the drilldown.

For more information, see Making General Tab Settings for a Drilldown.

5 Optionally, set up the IDO source for the drilldown.

For more information, see Setting Up the IDO Source for a Drilldown.

6 Optionally, use the Output Columns tab to rearrange the order in which the output is to be displayed
and the captions to be displayed for those columns. The data that is displayed on this tab is derived
from the IDO source set up in Step 5.

For more information, see Setting Up IDO-Based Critical Number Drilldowns - Output Columns Tab.

7 Optionally, use the Categories tab to specify one or more categories to which the drilldown belongs.
When you select a category, the Category Description field is populated automatically.

For more information, see Critical Number Categories.

8 Optionally, use the Sub Drilldowns tab to specify one or more sub-drilldowns to use in conjunction
with the selected drilldown.

For more information, see Setting Up an IDO-Based Sub Drilldown on page 150.

Infor Mongoose Core Development Guide | 148

Critical Number Drilldowns

9 Optionally, use the Static Parameters tab to specify one or more name-value pairs

Note: Static parameter options are most effective when the source of data for the critical number
is a stored procedure. When the data source is an IDO, the same end is accomplished much more
easily using filters.

10 Optionally, use the Input Parameters tab to rearrange the order in which input parameters are
queried for data and provide descriptions of each.

The data that is displayed on this tab is derived from the IDO source set up in Step 5.

11 Associate the drilldown with a critical number:

• Launch the Critical Numbers Setup form and navigate to the critical number.
• On the Drilldowns tab, select the new drilldown and specify a description.
• Save your changes.

Setting Up a Critical Number/Drilldown IDO Filter
1 To launch the Critical Number/Drilldown IDO Filter Setup form, click Filter on the Critical Number

IDO Source Setup form or the Drilldowns IDO Setup form. Use filters to filter the query performed
against the database to narrow the selected records.

For example, you would specify Stat=R to filter customer orders for regular orders.

Note: You cannot open this form directly.

2 In the Property Name field, specify the IDO property for which you want to set up the filter. This
field is not available if the comparison type is CN Parameter Has Value.

3 Specify the operator to use for the filter. If you select IS NULL or IS NOT NULL, the comparison
field and value need not be specified. This field is not available if the comparison type is CN
Parameter Has Value.

4 Select the comparison type:

• Literal: The property value is compared to the literal value you specify in the last field on this
row.

• Property Name: The property value is compared to another property in the same IDO. The
other property is specified in the last field on this row.

• Critical Number Parameter: The property value is compared to the value of a static
parameter defined on the Critical Numbers form. The name of that parameter is then specified
in the last field on this row.

• CN Parameter Has Value: The property value is compared to a Critical Number parameter
value. That value is specified in the last field on this row. If this option is selected, then the
Property Name and operator fields are not available.

5 In the last field on this row, specify the comparison value to be used for the corresponding comparison
type.

6 Optionally, if you are using multiple filter clauses, to instruct the system to treat the clauses as
Boolean OR comparisons rather than Boolean AND comparisons, select OR Instead of AND with
Previous Clause.

Infor Mongoose Core Development Guide | 149

Critical Number Drilldowns

7 To add the filter clause to the list of clauses in the display panel, click Add. The clause is added to
the list, formatted with the proper syntax.

8 Optionally, use Steps 2 through 7 to specify additional filter clauses.

9 Optionally, to remove all filter clauses and start over, click Remove.

Note: You cannot selectively remove individual filter clauses: If you choose to remove one, you
remove them all.

10 Click OK.

For complex comparison logic, you can edit the text in the editor field to add parentheses around OR
and AND statements, to ensure that the filter is evaluated properly.

Setting Up an IDO-Based Sub Drilldown
Second-level drilldowns can be very useful in cases where a critical number is calculated from subtotaled
data, and the details of the subtotal need to be accessible. You can use Output Column property
names of the parent drilldown as input parameters for the sub-drilldown.

To associate a new drilldown as a sub drilldown:

1 Create the drilldown.

2 On the Drilldowns Setup form, navigate to the top-level drilldown.

3 On the Sub Drilldowns tab, specify the new drilldown and a description for it.

4 Save the record.

Setting up a Sub-Drilldown Based on a Stored
Procedure
Second-level drilldowns can be very useful in cases where a critical number is calculated from subtotaled
data, and the details of the subtotal need to be accessible. You can use Output Column property
names of the parent drilldown as input parameters for the sub-drilldown.

The preconfigured Inventory Value critical number is a good example of second level drilldowns for
stored procedure-based critical numbers. This critical number shows your whole inventory value, and
drills down to a subtotal by inventory. It drills down one step further to item totals or location totals by
warehouse.

To associate a new drilldown as a sub drilldown:

1 Create the drilldown.

See Setting Up a Stored Procedure-based Critical Number Drilldown on page 142.

2 Optionally, use the @Parms parameters to accept filters into your drilldown.

Infor Mongoose Core Development Guide | 150

Critical Number Drilldowns

For example, the Inventory Value Detail Drilldown (SSSWBCanInvValDtlSp) accepts Whse in
@Parm1, Item in @Parm2, and Location in @Parm3. It is coded to use these values as filters if
provided, or ignore them if they are not provided.

3 Specify Source Parms in sequence for how you want to accept your parameters in your stored
procedure.

When one drilldown calls another, the sub-drilldown automatically pulls these values by column
header name from the calling drilldown. For example, the Item Inventory Value Detail drilldown has
a Column Heading named Item. When it calls the Inventory Value Detail sub-drilldown, the Item
value is passed to the Inventory Value Detail program in @Parm2.

4 Launch the Drilldowns Setup form.

5 Navigate to the top level drilldown.

6 On the Sub Drilldowns tab, specify the new drilldown and a description for it.

7 Save the record.

Example:

First Level Drilldown Program:

SSSWBCanInvValItemDtlSp

CREATE PROCEDURE SSSWBCanInvValItemDtlSp (
 @AsOfDate DateType
, @DrillNum WBDrillNumType
, @CrNum WBCrNumType
, @Id nvarchar(500)
, @Parm1 WBSourceNameType
, @Parm2 WBSourceNameType
, @Parm3 WBSourceNameType
, @Parm4 WBSourceNameType
, @Parm5 WBSourceNameType
, @Parm6 WBSourceNameType
, @Parm7 WBSourceNameType
, @Parm8 WBSourceNameType
, @Parm9 WBSourceNameType
, @Parm10 WBSourceNameType
, @Parm11 WBSourceNameType
, @Parm12 WBSourceNameType
, @Parm13 WBSourceNameType
, @Parm14 WBSourceNameType
, @Parm15 WBSourceNameType
, @Parm16 WBSourceNameType
, @Parm17 WBSourceNameType
, @Parm18 WBSourceNameType
, @Parm19 WBSourceNameType
, @Parm20 WBSourceNameType
, @Parm21 WBSourceNameType
, @Parm22 WBSourceNameType
, @Parm23 WBSourceNameType
, @Parm24 WBSourceNameType
, @Parm25 WBSourceNameType
, @Parm26 WBSourceNameType

Infor Mongoose Core Development Guide | 151

Critical Number Drilldowns

, @Parm27 WBSourceNameType
, @Parm28 WBSourceNameType
, @Parm29 WBSourceNameType
, @Parm30 WBSourceNameType
, @Parm31 WBSourceNameType
, @Parm32 WBSourceNameType
, @Parm33 WBSourceNameType
, @Parm34 WBSourceNameType
, @Parm35 WBSourceNameType
, @Parm36 WBSourceNameType
, @Parm37 WBSourceNameType
, @Parm38 WBSourceNameType
, @Parm39 WBSourceNameType
, @Parm40 WBSourceNameType
, @Parm41 WBSourceNameType
, @Parm42 WBSourceNameType
, @Parm43 WBSourceNameType
, @Parm44 WBSourceNameType
, @Parm45 WBSourceNameType
, @Parm46 WBSourceNameType
, @Parm47 WBSourceNameType
, @Parm48 WBSourceNameType
, @Parm49 WBSourceNameType
, @Parm50 WBSourceNameType
) AS
DECLARE
 @RowPointer RowPointer
, @TmpAmount AmountType
, @StartItem ItemType
, @EndItem ItemType
DECLARE @ttItemloc TABLE (
 RowPointer uniqueidentifier
, item nvarchar(30)
, amount decimal(20,8)
, processed tinyint
)
SET @StartItem = ISNULL(@Parm1, dbo.LowString('ItemType'))
SET @EndItem = ISNULL(@Parm1, dbo.HighString('ItemType'))
INSERT INTO @ttItemloc
SELECT RowPointer, item, 0, 0
FROM itemloc
WHERE item BETWEEN @StartItem AND @EndItem
WHILE EXISTS (SELECT TOP 1 1 FROM @ttItemloc WHERE processed = 0)
BEGIN
 SELECT TOP 1 @RowPointer = RowPointer
 FROM @ttItemloc
 WHERE processed = 0
 SET @TmpAmount = 0
 EXEC SSSWBCanInvValSubItemlocSp @RowPointer, @TmpAmount OUTPUT
 UPDATE @ttItemloc
 SET amount = @TmpAmount
 , processed = 1
 WHERE RowPointer = @RowPointer
END
INSERT INTO #tt_drill_results(

Infor Mongoose Core Development Guide | 152

Critical Number Drilldowns

 CHAR01, DECI01, amount
)
SELECT item, SUM(amount), SUM(amount)
FROM @ttItemloc
GROUP BY item
UPDATE #tt_drill_results
SET RowPointer = item.RowPointer
FROM #tt_drill_results tt, item
WHERE item.item = tt.CHAR01
RETURN 0

Second Level Drilldown Program:

SSSWBCanInvValItemDtlSp

CREATE PROCEDURE SSSWBCanInvValDtlSp (
 @AsOfDate DateType
, @DrillNum WBDrillNumType
, @CrNum WBCrNumType
, @Id nvarchar(500)
, @Parm1 WBSourceNameType
, @Parm2 WBSourceNameType
, @Parm3 WBSourceNameType
, @Parm4 WBSourceNameType
, @Parm5 WBSourceNameType
, @Parm6 WBSourceNameType
, @Parm7 WBSourceNameType
, @Parm8 WBSourceNameType
, @Parm9 WBSourceNameType
, @Parm10 WBSourceNameType
, @Parm11 WBSourceNameType
, @Parm12 WBSourceNameType
, @Parm13 WBSourceNameType
, @Parm14 WBSourceNameType
, @Parm15 WBSourceNameType
, @Parm16 WBSourceNameType
, @Parm17 WBSourceNameType
, @Parm18 WBSourceNameType
, @Parm19 WBSourceNameType
, @Parm20 WBSourceNameType
, @Parm21 WBSourceNameType
, @Parm22 WBSourceNameType
, @Parm23 WBSourceNameType
, @Parm24 WBSourceNameType
, @Parm25 WBSourceNameType
, @Parm26 WBSourceNameType
, @Parm27 WBSourceNameType
, @Parm28 WBSourceNameType
, @Parm29 WBSourceNameType
, @Parm30 WBSourceNameType
, @Parm31 WBSourceNameType
, @Parm32 WBSourceNameType
, @Parm33 WBSourceNameType
, @Parm34 WBSourceNameType
, @Parm35 WBSourceNameType

Infor Mongoose Core Development Guide | 153

Critical Number Drilldowns

, @Parm36 WBSourceNameType
, @Parm37 WBSourceNameType
, @Parm38 WBSourceNameType
, @Parm39 WBSourceNameType
, @Parm40 WBSourceNameType
, @Parm41 WBSourceNameType
, @Parm42 WBSourceNameType
, @Parm43 WBSourceNameType
, @Parm44 WBSourceNameType
, @Parm45 WBSourceNameType
, @Parm46 WBSourceNameType
, @Parm47 WBSourceNameType
, @Parm48 WBSourceNameType
, @Parm49 WBSourceNameType
, @Parm50 WBSourceNameType
) AS
DECLARE
 @RowPointer RowPointer
, @Whse WhseType
, @TmpAmount AmountType
, @StartWhse WhseType
, @EndWhse WhseType
, @StartItem ItemType
, @EndItem ItemType
, @StartLoc LocType
, @EndLoc LocType
DECLARE @ttItemloc TABLE (
 RowPointer uniqueidentifier
, whse nvarchar(4)
, item nvarchar(30)
, loc nvarchar(15)
, amount decimal(20,8)
, processed tinyint
)
SET @StartWhse = ISNULL(@Parm1, dbo.LowString('WhseType'))
SET @EndWhse = ISNULL(@Parm1, dbo.HighString('WhseType'))
SET @StartItem = ISNULL(@Parm2, dbo.LowString('ItemType'))
SET @EndItem = ISNULL(@Parm2, dbo.HighString('ItemType'))
SET @StartLoc = ISNULL(@Parm3, dbo.LowString('LocType'))
SET @EndLoc = ISNULL(@Parm3, dbo.HighString('LocType'))
INSERT INTO @ttItemloc
SELECT RowPointer, whse, item, loc, 0, 0
FROM itemloc
WHERE whse BETWEEN @StartWhse AND @EndWhse
 AND item BETWEEN @StartItem AND @EndItem
 AND loc BETWEEN @StartLoc AND @EndLoc
WHILE EXISTS (SELECT TOP 1 1 FROM @ttItemloc WHERE processed = 0)
BEGIN
 SELECT TOP 1 @RowPointer = RowPointer
 FROM @TTItemloc
 WHERE processed = 0
 SET @TmpAmount = 0
 EXEC SSSWBCanInvValSubItemlocSp @RowPointer, @TmpAmount OUTPUT
 UPDATE @ttItemloc
 SET amount = @TmpAmount

Infor Mongoose Core Development Guide | 154

Critical Number Drilldowns

 , processed = 1
 WHERE RowPointer = @RowPointer
END
INSERT INTO #tt_drill_results(
 CHAR01, CHAR02, CHAR03, DECI01, amount, RowPointer
)
SELECT whse, item, loc, amount, amount, RowPointer
FROM @ttItemloc
RETURN 0

Infor Mongoose Core Development Guide | 155

Critical Number Drilldowns

Chapter 9: DataViews

About DataViews
DataViews are advanced data grids that you can create to query a custom set of data, quickly and
easily. The basic DataView presentation is similar to an Excel spreadsheet, displaying data in columns.

Among other things, you can perform these actions:

• Use DataViews to create special groupings of data and summaries, optionally with post-query filters.
• Merge data from two levels of data and present them as one record.
• Use the data returned from various sources to create your own custom columns that include

calculations and calculated summaries.
• Navigate to the related data maintenance form by clicking Details on the right-click context menu.

DataView Sources and Types

The data for a DataView can come from a variety of sources, each resulting in one of four types of
DataView (or DataView-like) displays:

• Form DataViews can be created from any form that displays data.
• These DataViews are launched by clicking the DataView button in the toolbar.
• These DataViews use the data from the form as the source.
• It does not matter whether the data was filtered before displaying on the form or loaded using a

custom load method. But keep in mind that the user can see in the DataView only the data that
they can access on the form.

• You can manipulate the layout for a DataView to view the form data in ways not possible on the
form.

• Layouts created from these DataViews can be saved and applied to the data from the same form
again in the future.

• There is a toolbar icon that you can use to send the data in the current collection to DataView.
If this icon is hidden in your toolbar, you can use the Theme editor to display it.

• Predefined DataViews are constructed using the DataViews setup process and are available only
to users who have access.
• These DataViews are typically launched from the DataViews form.
• They require more setup than form DataViews (using the DataViews Setup form).
• Predefined DataViews provide greater control over which IDOs are accessed and which properties

are shown than do Form DataViews.
• Permissions made on the DataViews Setup form control which DataViews a given user can see.
• Predefined DataViews can be embedded in forms. This is done by implementing a DataView

component from the Toolbox in Design Mode.

Infor Mongoose Core Development Guide | 156

DataViews

• Predefined DataViews can be used to produce custom reports. These reports can be treated as
system reports, with Vendor-level protections and associated report criteria forms.

• Critical Number Drilldowns are specialized DataViews that provide details about what makes up a
Critical Number.
• Drilldowns are launched by double-clicking a Critical Numbers form or gauge.
• The drilldown controls specifically which properties are displayed.
• These drilldowns inherit their permissions from Critical Numbers licensing and provisioning.
• They have the same layout capabilities as other DataViews.
• Drilldowns are configured using the Drilldowns Setup form.
• Both IDO collection and stored procedure sources are supported.
• When used on Critical Numbers forms, row coloring is supported for goals and alerts.

• DataSearches are specialized searches in which you can search across predefined data sources
for specific values.
• DataSearches are launched either by clicking the DataSearch toolbar button or by opening the

DataSearch form.
• The search results are displayed in a DataView-like display.
• Compared to the typical DataView display, however, the DataSearch display, while similar, is

much more limited. Basically, you can only expand the data records, and you can reorder the
columns.

• Sources of data to be used for DataSearches are defined using the DataSearch Source Setup
form. This form provides control over which properties are searched and which users or groups
can see what data sources.

DataView Results

When data is returned from a DataView query, the results are typically displayed in a basic grid on the
appropriate DataView results form. There, depending on what kind of DataView query was performed,
you can reorganize the data, decide what data displays, and take other actions with the results, such
as printing a quick, on-the-fly report, or export the data to a spreadsheet.

See About DataView Results.

DataView Layouts

To organize and present the data that is included in a DataView, you can create layouts. Layouts can
eliminate the redundancy of grouping and sorting the results every time you want to view the data.

These layouts are created by employing a number of options. You can perform these actions:

• Rearrange, reorder, and resize the columns
• Define data groupings
• Create custom columns, which can include "on the fly" calculations
• Display or hide selected columns
• Merge different levels of data
• Define summaries

Once you have the DataView layout organized and the data presented the way you want it, you can
save these layouts for future use and reference. You can even use these layouts to create your own
custom reports.

Infor Mongoose Core Development Guide | 157

DataViews

As with form customization, DataViews support user-level, group-level, and site-level layouts. Access
to these layouts can also be controlled using filters and user permission settings.

See About DataView Layouts on page 163.

Setting up a new DataView
To set up (create) a new predefined DataView:

1 On the DataViews Setup form, execute Filter In Place.

2 Click in the Grid View, and then click in the auto-insert (last, empty) row.

3 In the DataView field, specify a name that best describes the data to be presented.

4 Optionally, to prevent modifications to the DataView by users other than those with Vendor Developer
permissions, select the System Record option.

This option allows you to protect the structure of DataViews that you deliver to customers/users. It
prevents others from deleting or modifying any content you provide, while also allowing customers
to add their own content.

5 Optionally, to designate a report caption/title, in the Caption Override field, specify the caption.

This can be a translatable string or a literal value.

When specified, this string replaces the default system-generated caption on DataView report
outputs.

Note: You can also specify a layout-specific caption override, by setting the Caption Override field
on the Layouts tab. If both that and this field have caption overrides, the layout-specific override
takes precedence.

6 Optionally, use the Criteria Form drop-down list to select a form to use to collect report criteria.

This option is used primarily when the report requires a significant number of option specifications
for data to be collected. When that is a low number, you typically prompt for each option individually;
but when there is a significant number, it is easier and faster for the user to specify the data to be
collected using a report criteria form.

7 On the General tab, specify the required and optional information for each IDO that is to be included
in the DataView queries.

See Specifying DataView setup information - General tab on page 165.

8 Optionally, after specifying each IDO, to make additional IDO specifications for the DataView, click
IDO Setup and follow the procedure in the topic Setting additional IDO specifications for a DataView
on page 167.

9 Optionally, use the options on the Input Parameters tab to add input values or ranges.

See Specifying DataView setup information - Input Parameters tab on page 169.

10 Optionally, use the options on the User Permissions tab to control who has access to this DataView.

See Specifying DataViews setup information - User Permissions tab on page 170.

11 Optionally, view information about or make copies of layouts on the Layouts tab.

See Specifying DataView setup information - Layouts tab on page 171.

Infor Mongoose Core Development Guide | 158

DataViews

12 Optionally, use the Report Options tab fields to set the report orientation and to select what regions
are to be displayed on the report.

See Specifying DataView setup information - Report Options tab on page 172.

13 Save your work.

Note: If the intended use for this DataView is to be used for report output, you should create an
associated report criteria form.

Displaying a Predefined DataView
Use the DataViews form to launch the DataView Results form and view predefined DataViews and
layouts. Predefined DataViews are DataViews that have been set up for specific uses in the system.
You can use the results on these DataViews to drive ad hoc reporting.

To display a predefined DataView:

1 Open the DataViews form.

2 To display the list of predefined DataViews, execute Filter In Place.

3 Select a DataView from the list.

4 If multiple layouts exist for the DataView, select a layout.

To help determine which layout to view, examine the column values for each layout:

DescriptionColumn

This field provides a description to distinguish one version of the DataView
layout from another.

Layout

This field specifies the level at which the DataView layout is available: Vendor,
Site, Group, or User.

Scope Type

This field specifies the group or user for which this layout is designed. Other-
wise, this field displays [NULL].

Scope Name

When more than one layout exists for the same scope type and name, this
field is selected for the layout that takes precedence .

Default

5 To open the DataView Results form for the selected DataView layout, click Launch.

Creating Custom Columns for DataViews
Use custom columns to merge and display data from various sources and to create columns on which
you want to perform operations and calculations on data in ways not possible on the original forms.

Use the Custom Columnsdialog box to create custom columns for a DataView:

Infor Mongoose Core Development Guide | 159

DataViews

1 While DataView results are displayed, select Display > Custom Columns.

2 Verify that the Collection field shows the IDO collection from which the data is being retrieved.

3 In the Name field, specify the name to assign to the custom column.

Note: This name is the label that will be used for the custom column header. Take care when
specifying this name, because you cannot change it later. If you decide to change the name/label
later, you must delete the existing column and create it again with the new name.

4 In the Data Type field, specify the type of data to use for the custom column display.

5 Click Add.

6 Use the Advanced Editor to define the formula or expression that is to specify what is displayed
in the column.

7 After you finish in the Advanced Editor, click OK.

The DataView grid immediately shows the new column with the results of the formula or expression.

Specifying Summaries for DataViews
Use specified summaries to display aggregate information about the data represented in a DataView.
This aggregate information can include either standard summaries, such as Average, Count, Maximum,
Minimum, and Sum; or custom summaries that you define.

1 When DataView results are shown, select Display > Show Summaries.

2 Select a column on which you want to base a summary and click the "sigma" button.

3 In the Select Summaries dialog box, specify one or more standard summaries, one or more custom
summaries, or both.

To specify a standard summary, depending on the data type of the column you used to launch the
Select Summaries dialog box, you can select any combination, all, or none of these options:

• Average: Calculates the mean average of the values retrieved for that column. This option is
enabled only for numeric data types.

• Count: Shows the total number of all the records retrieved.
• Maximum: Shows the maximum value represented in that column. If the value is a string or text

value, standard alphanumeric valuation is used.
• Minimum: Shows the minimum value represented in that column. If the value is a string or text

value, standard alphanumeric valuation is used.
• Sum: Adds the values of all records retrieved for that column. This option is enabled only for

numeric data types.

To specify a new custom summary in the Select Summaries dialog box:

a In the Name field, specify the name to assign to the custom summary.

Note: This is the label that will be used for the custom summary caption. Take care when
specifying this name, because you cannot change it later. If you decide to change the name/caption
later, you must delete the existing summary specification and re-create it with the new name.

b Click Add.

Infor Mongoose Core Development Guide | 160

DataViews

c Use the Advanced Editor to define the formula or expression that is to specify what is displayed
in the column.

After you finish in the Advanced Editor, click OK.

The summary bar at the bottom of the DataView grid immediately displays the specified summaries.

Displaying DataView results
DataView results can be displayed in three ways:

• You can launch the DataView Results form from the DataViews form, displaying only predefined
DataViews.

• You can launch the DataView Form Results form from the DataViews form, displaying only form
DataViews.

• You can create an event to launch the DataView Results form directly from a form you choose.

Data

The DataView Results form and DataView Form Results form show data based on the properties
that have been set on the DataViews Setup form and the DataView IDO Setup form. Properties differ
by DataView and layout.

Options

Specify this information on the DataView Results form:

DescriptionForm Menu

You can save changes to the current layout or save it as a new layout with
a different name. In either case, you can designate a layout as the default
layout for a DataView.

You can also delete and select existing layouts.

Layout

Infor Mongoose Core Development Guide | 161

DataViews

DescriptionForm Menu

Use these options to manipulate the data in the results grid:
• Expand All: This option displays all rows of data.
• Collapse All: This option displays only the top level rows of data.
• Choose Columns: This option launches the Choose Columns dialog

box, in which you can designate which columns are to display and which
are to be hidden.

• Custom Columns: This option launches the Custom Columns dialog
box, in which you can create new columns from existing columns in the
data results.

• Show/Hide Options: These options display or hide the Group By Area
in the DataView header, as well as the Summary, Filter, and Pin Column
icons in the column header.

• Show/Hide Group By: This option displays or hides the Group By
Area in the DataView header.

• Show/Hide Column Scroll Lock: This option displays or hides the Pin
Column icons in the column headers.

• Show/Hide Filters: This option displays or hides the Filter icons in the
column headers.

• Show/Hide Summaries: This option displays or hides the Summary
icons in the column headers.

• Show/Hide Extended Captions: This option displays or hides extended
captions in the column headers. An extended caption consists of any
default caption (or caption override), followed by the property name in
parentheses.

Display

This menu consists of these entries:
• Print Preview - This option generates a preview of the DataView as it

will appear when printed. This preview displays in a separate window.
• Print - This option launches the Print dialog box, which allows you to

print the DataView display to any local system-enabled printer.

Print

Use this menu to export the DataView output.

This option uses the current state of the DataView for export. Features
such as column order and visibility, filters, and summaries are preserved
and supported in the output.

Output options include these:

• Excel - This option formats the output as a spreadsheet file and then
opens it in Excel (or other compatible spreadsheet application).

• XPS - This option converts the output to XPS format and saves it as an
XPS file.

• PDF - This option converts the output to Portable Document Format
(PDF) and saves it as a PDF file.

Note: The Group feature is not supported in the web client. If a DataView
uses grouping, you cannot export the data from a web client.

Also, the web client supports export only to Excel files, not XPS.

Send To

Infor Mongoose Core Development Guide | 162

DataViews

DescriptionForm Menu

Use the options on this menu to process the data displayed by the
DataView. The menu has these options:
• Refresh - This option requeries the data using the same search criteria

as the current display.
• Get More Rows - When the number of records available exceeds the

record cap for a query, this option allows you to requery and return more
records.

• Prompt for Inputs - For DataViews that have input parameters with no
supplied values, this option allows you to perform a new query using
different input parameter values.

Data

This option launches the DataViews Setup form pre-filtered for the current
DataView.

Setup

Note: If you do not have permission to see the results, an authorization message is displayed instead
of the results.

About DataView Layouts
Once a basic DataView has been created, users who have access to them can rearrange and further
organize the DataView display. You can perform these additional actions:

• Columns can be moved or hidden.
• Summaries of data can be created.
• Data can be grouped and merged.
• Retrieved data can be further filtered.
• Custom columns can be created and treated like any other columns. These custom columns can

include calculations that modify and manipulate the data so as to present additional values not
available from just the original data source.

Use these actions to rearrange, reorganize, and manipulate the data that was retrieved.

After the information is organized and displayed as desired, the resulting presentation is considered a
layout.

Generally, a layout is only available as long as the DataView is still open and not modified further.
However, any particular layout can be saved and reused.

Furthermore, any given DataView can have virtually any number of layouts created from it, simply by
using the techniques and practices already mentioned. This means that a single DataView can have
multiple layouts and many uses.

Note: DataSearch layouts are the exception to this rule. You can save DataSearch layouts, but you
can only have one layout per DataSearch Source.

Layouts created and saved by Vendor Developers have a scope of "Vendor" associated with them.
Users who have Site Developer editing permissions can save layouts at the Site, Group, and/or User

Infor Mongoose Core Development Guide | 163

DataViews

scope level. Individual users with DataViews access can normally only save layouts at their own user
level.

Layouts can be copied and used as the basis for yet other layouts. For example, the copy of a layout
might have additional custom columns added to created calculated values. This version of the layout
might then have a scope of User assigned and be assigned to a single manager.

Copying a DataView Layout
You can copy a DataView layout either from the DataView Layouts form or from the Layouts tab of
the DataViews Setup form.

To copy a DataView layout:

1 From the list of saved layouts, select the one you want to copy.

2 Click Copy Layout.
3 Optionally, use the Layout field to rename the copied layout.

4 Optionally, change the Scope Type to the desired level.

5 If you changed the Scope Type to either Group or User, use the appropriate drop-down list to
specify the desired group or user.

6 Optionally, if there are multiple layouts with the same name and scope type, select the Default check
box for whichever layout should be considered as the default layout.

7 Save your work.

Setting Up Predefined DataViews
Using the DataViews Setup form, you can create and maintain predefined DataViews, select the IDOs
to use when results are displayed to the user, designate user and group permissions, and select data
layout options.

The definition for a predefined DataView consists of up to four basic sets of options:

• The general settings are the fundamental settings that define the DataView. These settings are
made on the General tab:
• The DataView name
• The IDOs that the DataView is set to query
• How many records the query is limited to
• The definitions of any filters to be used in the query
• Other related information

For more information, see Setting up a new DataView on page 158.

Infor Mongoose Core Development Guide | 164

DataViews

• Input parameters are considered optional and are set using the Input Parameters tab. Input
parameters are used as filtering mechanisms to limit the amount and type of data retrieved. These
parameters can be especially useful in setting up DataViews as sources for formal reports.

• You can control who has access to what DataViews by setting user and group permissions on the
User Permissions tab.

• You can view information about and make copies of layouts, using the Layouts tab.
• Finally, you can determine the way the report will print, using the options on the Report Options

tab.
Note: A predefined DataView is first processed as a temporary report the same as a Report type
form. Because of this, you can use these options to specify what options are to appear on the final
report output.

Specifying DataView setup information - General tab
When you set up a predefined DataView, specify this information on the General tab of the DataViews
Setup form.

Note: You can specify multiple data sources to be queried in the DataView. Specify individual information
for each data source.

Description/CommentsRequired or Option-
al?

Option

Use this button to launch the DataView IDO
Setup form and specify exactly what data you
want to use from a specified IDO.

You can use this button/form for each IDO that
you specify for a DataView, to define and limit
exactly what data from each IDO is to be queried.

See Setting additional IDO specifications for a
DataView on page 167.

OptionalIDO Setup

Specify whether the data source is to be an IDO
Collection or a custom load IDO Method.

RequiredSource Type

Specify what IDO is to be the source for the data
to be returned.

RequiredIDO

Verify that the IDO alias is what you want.

This value is generated automatically. You can
modify the recommended alias.

RequiredIDO Alias

Specify the name of the custom load IDO method
being used as the data source.

This field is enabled only if IDO Method is select-
ed as the Source Type.

Required when en-
abled

Source Name

Infor Mongoose Core Development Guide | 165

DataViews

Description/CommentsRequired or Option-
al?

Option

Use this field to specify an IDO collection that is
to be considered the "parent" of the subcollection
specified in this row.

This field is enabled only if IDO Collection is
selected as the Source Type. It is required only
if the specified IDO collection is a subcollection.

See Description/Com-
ments.

Parent IDO

Use this field to specify the maximum number of
records to return when the DataView query is
performed. Select from these options:
• Use System Setting - The system record cap

setting determines the maximum number of
records that can be returned.

• Use Specified Max - This option allows you
to set your own maximum for the number of
records to be returned. When selected, this
option makes visible and enables the Record
Cap Value field.

• Retrieve All - This option instructs the system
to retrieve all available records, regardless of
any record cap settings elsewhere on the
system.

OptionalRecord Cap

This column is visible and enabled only when the
Record Cap setting is Use Specified Max. By
default, this field contains the system setting for
the record cap. You can change it to whatever
value you choose.

See Description/Com-
ments.

Record Cap Value

Specify a filter for the system to use when per-
forming the query. This option is enabled only
when Source Type is IDO Collection.

To filter data when Source Type is IDO Method,
you must specify the filter parameters within the
method itself.

OptionalFilter

Optionally, specify which property is to be used
to sort the retrieved results. This option is enabled
only when Source Type is IDO Collection.

OptionalOrder By

Infor Mongoose Core Development Guide | 166

DataViews

Description/CommentsRequired or Option-
al?

Option

Specify whether the parent-child link is to be a
multi-level or single-level link.
Note: This option is enabled only if a Parent IDO
is specified.
• The Multi Level option (default) nests and in-

dents the child IDO information under the
parent information.

• The Single Level option links and presents
the parent and child IDO information at the
same level.

OptionalLink Type

Specify how the subcollection is linked to the
parent IDO collection.
Note: This option is enabled only if a Parent IDO
is specified.

The syntax is the same as described in IDO Link
By Editor.

OptionalLink By

To prevent modifications to the setup for the se-
lected IDO by users other than those with Vendor
Developer permissions, select this option.

This option is slightly different from the System
Record option for the DataView itself, in that it
protects only the selected IDO setup.

The exceptions to this rule are the Record Cap
settings and the Show Notes settings.

OptionalSystem Record

To display any external notes that might be at-
tached to the DataView, select this option.

When this option is selected, external notes are
displayed as child layers in the DataView, under-
neath the IDO.

OptionalShow External Notes

To display any internal notes that might be at-
tached to the DataView, select this option.

When this option is selected, internal notes are
displayed as child layers in the DataView, under-
neath the IDO.

OptionalShow Internal Notes

Setting additional IDO specifications for a DataView
When you create a predefined DataView, you can set up the associated IDO so that only the desired
data is retrieved when the DataView is displayed. This ensures that you minimize the retrieval time
and get only the data that you really need.

Infor Mongoose Core Development Guide | 167

DataViews

Note: This information applies only to predefined DataViews. The data for other types of DataView
displays is controlled by the source from which the display was launched.

Also, the information in this topic is closely related to the information in the topic Specifying DataView
setup information - General tab on page 165. In general, when information is presented in that topic, it
is not repeated here. Only additional information and the expanded capabilities of the DataView IDO
Setup form is presented here.

To configure additional IDO specifications for a DataView, use these guidelines:

• IDO section - Depending on the Source Type, you can change or modify several of the settings in
this section. You can also set or modify these settings on the General tab of the DataViews Setup
form.

• Link By section - As with the Link By option on the DataViews Setup form, these options are
enabled only when a Parent IDO is specified on that form.

This form, however, provides additional specification options. You can specify which properties are
to be used to link and display data. Do this by specifying a Parent Property and a Child Property
and then clicking Add.

• Order By section - As with the Order By option on the DataViews Setup form, these options are
enabled only when the Source Type is IDO Collection, as specified on that form.

This form, however, provides additional specification options. You can specify properties by which
to sort the data that is displayed. Do this by specifying one or more properties by which to sort the
data and whether the data is to be displayed in Ascending or Descending order; and then clicking
Add.

Note: If a record cap is in use, the Order By setting determines which records are selected for
retrieval first.

• Properties section - You can specify exactly which properties are to be included in the data query
by selecting them in this section. Properties that are not "Selected" are not included in the return
results for the data query.

In addition to selecting which properties to include in the data query, you can also view and/or specify
these settings for each property:

DescriptionSetting

Read-only. This field displays any description provided for the property,
as specified on the IDO Properties form.

Description

Read-only. This field displays any default caption currently defined for
the property, as specified on the IDO Properties form.

You can override the default caption, using the Caption Override field.

Default Caption

Use this field to override the default caption for a property. Whatever
you provide as a caption override is what displays as the column header
for that property in the DataView Results form.

Caption Override

When selected, this option prevents anyone other than a Vendor Devel-
oper from making modifications to or deleting a property specification
for the DataView.

System Record

Infor Mongoose Core Development Guide | 168

DataViews

Specifying DataView setup information - Input
Parameters tab
When you set up a predefined DataView, you can specify this information on the Input Parameters
tab of the DataViews Setup form.
Note: The options on this tab can be especially helpful when setting up a DataView to be used to
create reports. You can use input parameters to specify exactly what data can be used for query ranges
or other return results, using a report criteria form associated with the DataView.

DescriptionColumn

These integers indicate the order in which the specified input parameters
are queried.

You can assign this number at the time of the parameter's creation. Once
the parameter has been saved, you cannot change it.

Sequence

Use the drop-down list to specify the IDO property to be used for the input
parameter.

When you select a property in this field, the Description field is automati-
cally populated with the default value for the property, if one exists. You
can modify the value in the Description field, if desired.

Note: If the Source Type on the General tab is set to IDO Method, this
field is disabled.

Property Name

When used, this field specifies an operation to use in setting a range for
the data to be retrieved. When two such operators are used in tandem,
you can set an upper range limit and a lower range limit.

For example, suppose you want to retrieve the values of all customers
whose names begin with the letter 'C'. You could create one parameter
using the operator Greater Than Or Equal To with a Description value
of C. You could then create a second parameter using the operator Less
Than, with a Description value of D. By applying both of these parameters
to the Property Name of CustName, you effectively set a range for cus-
tomers whose names begin with the letter 'C'.

See the help topic DataView Input Parameter Operators.

Note: If the Source Type on the General tab is set to IDO Method, this
field is disabled.

Operator

Infor Mongoose Core Development Guide | 169

DataViews

DescriptionColumn

Specify a string that describes this parameter.

This string is used when prompting for this parameter, so that the user has
an idea of what the parameter is. In sense, you can consider this a prompt
string or label string.

This string can be a literal string (for example, Starting Customer) or
it can be the name of a translatable string (for example, sStartingCus-
tomer). When translatable strings are used, they are translated at run
time.

If the DataView is self-prompting, then this string is used as the label for
the input parameter on the DataView Inputs form.

If the DataView component is embedded in a form, then this string is used
to label the input parameter field within the DataView component binding.

Description

This option is enabled only when the specified property is a date/time
property. When selected, this option causes the time on a Date/Time
property value to be set to the "end of day," which is defined in the system
as 11:59:59.99 PM. When cleared, the system uses the system date/time
that the user performed the query. The use of this option allows you to set
very precise date/time ranges.
Note: If the Source Type on the General tab is set to IDO Method, this
field is disabled.

End of Day

Specifying DataViews setup information - User
Permissions tab
Use the User Permissions tab on the DataViews Setup form to specify who can access the DataView
that is being created or modified. You can specify permissions at the user level, the group level, or a
combination of the two.

DescriptionColumn

Specify users who are to have access to the DataView. The list is populated
from the list of users in the system.

User Name

(Read-only) This field displays the description associated with the specified
user, as specified on the Users form.

[User] Description

Specify user groups that are to have access to the DataView. The list is
populated from the list of user groups in the system.

Group Name

(Read-only) This field displays the description associated with the specified
user group, as specified on the Groups form.

[Group] Description

Infor Mongoose Core Development Guide | 170

DataViews

Specifying DataView setup information - Layouts tab
When you set up a predefined DataView, you can specify this information on the Layouts tab of the
DataViews Setup form.
Note: You can also use this tab to create copies of layouts. These duplicate layouts can each have
a different scope and can be designated as the default version of the layout if desired.

DescriptionField/Option

To create a copy of a layout that you can use as the basis of a new layout,
click this button.

When you copy a layout, the copy initially has all the same field values,
except for the Scope Type, which defaults to Site.

Copy Layout

Use this field to name and identify a new layout.

For layouts that have already been saved, this field is read-only and shows
the name of the layout as it was saved.

Layout

Use this field to specify the level of scope to which the layout is available.
The default scope for a copied layout is Site.

If you specify a scope of either Group or User, you must also specify a
Group Name or User Name, respectively.

If you have Vendor Developer editing permissions, and you want to define
the scope type as Vendor Default, enter 0 (zero) in this field.

Scope Type

If you specify either Group or User in the Scope Type field, you must
specify the name of the applicable user group or the individual user in this
field.
Note: If Group is specified as the Scope Type, this column's header
displays as Group Name. If User is specified as the Scope Type, this
column's header displays as User Name.

Scope Name

When there are multiple layouts with the same Scope Type and Scope
Name, this option specifies the default layout.

The Default layout option is set using the DataView Layouts form. On
this form, the option is read-only.

Default

Optionally, to designate a caption/title to use for the selected layout,
specify the caption.

This can be a translatable string or a literal value.

When specified, this string replaces the default system-generated caption
on DataView report outputs.

Note: You can specify a DataView-level caption override, by setting the
Caption Override field at the top of the form. If both fields have caption
overrides, the layout-specific override here takes precedence.

Caption Override

Use this field to set the orientation (Landscape or Portrait) for the selected
layout.
Note: You can specify a DataView-level orientation, by setting the Report
Orientation field at the top of the form. If both fields have orientations
specified, the layout-specific setting here takes precedence.

Report Orientation

Infor Mongoose Core Development Guide | 171

DataViews

Specifying DataView setup information - Report
Options tab
When you set up a predefined DataView, you can specify this information on the Report Options tab
 of the DataViews Setup form.

DescriptionFields/Options

Sets the report output to either a Portrait or
Landscape orientation.

Report Orientation

Because the predefined report output is first de-
termined by a temporary Report form layout,
these settings are the same as those used for
the Report form.

Note: This option applies only to reports running
as background tasks (TaskMan, runreport.exe).
It does not apply to DataViews running in the
foreground.

• Display Report Header
• Display Page Header and Footer
• Repeat Headers on New Page
• Repeat Headers on Collection Change
• Insert Page Break Between Groups
• Reset Page Number Between Groups
• Can Grow

Copying a DataView to Create a New One
You can copy an existing DataView that is close to what you want, and then modify it and save it as a
new DataView.

To create a new DataView from an existing one:

1 Optionally, with the DataViews Setup form open, select the DataView that you want to copy, and
click Copy DataView.

2 In the DataViews Copy form, verify that the Current DataView is the one that you want to copy.

3 In the New DataView field, specify a name for the new DataView.

4 Click Copy DataView.

5 When the confirmation message displays, click OK.

The DataViews Copy form closes, and the new DataView copy is added to the list of DataViews
in the DataViews Setup form.

6 Select your new DataView and modify it as desired.

Use the procedure in Setting up a new DataView on page 158, starting with the step to specify the
required and optional information for each IDO.

Infor Mongoose Core Development Guide | 172

DataViews

Setting Up a DataView Filter
1 To launch the DataView Filter Setup form, click Filter on the DataView IDO Setup form.

Note: You cannot open this form directly.

2 In the Property Name field, specify the IDO property for which you want to set up the filter.

3 Specify the operator to use for the filter. If you select IS NULL or IS NOT NULL, the comparison
field and value need not be specified.

4 Select the comparison type:

• Literal: The property value is compared to a hard-coded value.
• DataView Property: The property value is compared to another property value from the

DataView.

This can be useful when you want to use a comparison of two properties to control what records
are returned. For example, if you wanted to see which orders do not have the full number of
items shipped, you could set up the property comparison QtyShipped < QtyOrdered. Or
suppose you wanted to know which orders were not shipped on time, you could set up the
property comparison ShipDate > DueDate.

• Form Property: Use this option in cases where the DataView is embedded on a form and you
want to filter the DataView based on properties from the form's IDO collections.

For example, you could use this option to filter the DataView's customer number property by the
form's customer number property. When you then add the filter clause, the resulting syntax might
look something like this: CustNum = FP(CustNum)

5 In the last field on this row, specify the comparison value to be used for the corresponding comparison
type.

6 Optionally, use Steps 2 through 5 to specify additional filter clauses.

7 Optionally, if using multiple filter clauses, to instruct the system to treat the clauses as Boolean OR
comparisons rather than Boolean AND comparisons, select the check box labeled OR Instead
of AND with Previous Clause.

8 To add the filter clause to the list of clauses in the display panel, click Add.

The clause is added to the list, formatted with the proper syntax.

9 Optionally, to remove all filter clauses and start over, click Remove.

Note: You cannot selectively remove individual filter clauses: If you choose to remove one, you
remove them all.

10 Click OK.

For complex comparison logic, it might be necessary to add parentheses around filter clauses, to make
sure they are evaluated properly. To accomplish this task, manually edit the data in the display list.

Note: To get a better understanding of how filters can be used, look at the vendor level DataViews
provided as part of the application installation.

Infor Mongoose Core Development Guide | 173

DataViews

Setting Up the Right-Click Actions Menu for DataViews
Use the DataView Actions Setup form to set up right-click menu actions for components. You can
specify the forms to open, executables to run, etc. The options you specify are displayed alphabetically
in the dynamic menu list. You can specify a menu action at a class level so that the action is displayed
each time a property of that class is displayed. For example, actions associated with the CustNum
class can be available on any component that display a customer number field. You can also associate
a menu action with a specific IDO or property to limit the action's availability to a more specific set of
components.

Note: The options you specify in the dynamic menu list are displayed alphabetically within Action Type
and are displayed below the static menu options.

Each time a user right-clicks on a component, the system dynamically builds the menu options based
on the menu actions that are defined for the class, IDO, and property of the component value. The
user can perform any of these types of actions that are defined:

• Launch a specific form that is filtered to show values from the selected component value.
• Run an executable program and pass it parameters that are values from the selected component

value.
• Launch another component value.
• Perform a global search, which are available on all columns, that launches the DataSearch form

that is filtered with values from the selected component value.

Setting the Caption for the menu option

In the Caption field, specify the text that displays for this action in the right-click menu. You can specify
a string name here if you want the option to be translatable.

This field can be used to suppress multiple occurrences of the same command if the same action is
available at different scope levels. Only one occurrence of a caption with the same name is displayed.
If there are duplicate actions, the more specific level takes precedence: User, then Group, then Site,
then Vendor.

Displaying the action on the Action Menu

If the action should be displayed on the Action menu, select Active. Clear this field to temporarily
disable an action.

Specifying "Applies To" information

To set up actions that are shared by multiple forms and components, use the Applies To section of the
DataView Actions Setup form to create a structure that identifies the cases where an action is displayed.
Specify which property class, IDO, or property should have access to the action you are defining. If
any fields in this section are left blank, the action applies to everything in that group. For example, if
you specify a Class Name of CustNum, the menu action is enabled for every component that is
associated with a customer number. However, if you specify the IDO as WBFSCustomers, then only
those components that are built using the WBFSCustomers IDO display the menu action.

In this section, you can specify this information:

Infor Mongoose Core Development Guide | 174

DataViews

• Specify theScope level to which this action applies: Vendor, Site, Group, or User. If the scope is
Group or User, specify the group name or user name.

• Specify the Class Name of an IDO property class to which this action applies.

Specifying "Action" information

Specify this information to identify the action to take when a user selects the menu option:

• Specify the Action Type to be performed by this menu option: Run DataView, Run Form, or Run
Executable.
• If the Action Type is Run DataView, you must specify the name of the DataView, the name

of the layout to use when running the DataView, and the Filter Property, which is described
below in "About Filters."

• If the Action Type is Run Form, you must specify the name of the form to open and the Initial
Command: Refresh, Add, or FilterInPlace to run on the target form when the action is called.
Specify the Filter Property, which is described below in "About Filters."

Specify any variables to set on the target form. This list of variables must be separated by a
comma and must contain the values to which to set them. For example, for a DataView action
that opens the Order Verification Report using the selected CoNum in the component, set the
value in SetVariables to OrderStarting=FP(CoNum),OrderEnding=FP(CoNum), where FP is a
substitution keyword. This example sets both the starting and ending customer order number
range of the report to the value of the CoNum in the form where you selected the action. The
substitution keyword CURPROP() could be used instead of CoNum if there is a possibility that
the property might have a different name, for example, CoCoNum. See "Substitution Keywords"
below.

• If the Action Type is Run Executable, click Browse and select the path and file name of the
executable program that you want to run when the action is selected.
Note: The executable program runs on the client. If users that select this action cannot access
the executable file on their local computers using the path you specified here, an error message
is displayed.

• If the Action Type is Run Form or Run Executable you can apply extra filters in addition to the
one in the Filter Property field. Click Additional Filter. The DataView Actions Filter Setup form
is displayed. Substitutions are supported in this field, as described below in "Substitution Keywords."
For more information, see DataView Actions Filter Setup.

About Filters

If the Action Type is Run DataView or Run Form, you can use the Filter Property and Additional
Filter fields to specify how you want to filter the resulting DataView or form.

The Filter Property is the property on the target form or DataView to which the value of the current
property is filtered. For example, if you define an action with the caption Item Details, where the
Action Type is Run Form and the Form Name is Items, then if a user right-clicks on the item number
CP-10000 in a component and selects Item Details, the Filter Property is the property in the Items
form that is filtered by CP-10000.

You can apply additional filters with the Additional Filter field and button.

See Setting Up a DataView Actions Filter on page 176.

Infor Mongoose Core Development Guide | 175

DataViews

Substitution Keywords

Substitutions are supported in the Additional Filter, Command Line Parameters, and Set Variables
fields. Supported substitution keywords are P(...), FP(...), and CURPROP(). These keywords work the
same way as they work in design mode, except that if the component is a DataView. P and FP refer
to the properties in the current row of the DataView instead of the form collection, and CURPROP()
refers to the name of the property on which the user right-clicked. Substitutions can be used in these
cases:

• To filter by additional values in the collection
• To set variables on target forms from values in the form
• To pass a value from the form to an executable in a command line parameter

Setting Up a DataView Actions Filter
To build a filter to use on a DataView action:

1 In the DataView Actions Filter Setup form, select the property of the IDO to be evaluated.

For a Run DataView action type, this is the primary collection of the predefined DataView. For a
Run Form action type, this is the primary collection on the target form.

If this form is launched from the DataView Actions Setup form with a Run Form action type selected,
the Property Name drop-down list shows all bound and derived properties in the IDO, not just those
that are bound to the form.

2 Select the operation method.

If you select Is Null or Is Not Null, do not specify anything in the Comparison field and value.

3 Select the comparison type:

• Literal: The property is compared to a specified value.
• Source DataView Property: Use this IDO property from the source DataView (where the

user right-clicked) to filter the form or DataView that is opened by the action. For example, if the
user right-clicks on a customer number and selects an Action menu option that opens the
Customer Orders form, the additional filter created here could include the Ship To (CustSeq)
property as part of the filter, like this: CustSeq=FP(CustSeq).

• Target DataView Property: Use this IDO property from the target DataView (the DataView
that will be opened by the action) to filter the DataView that is opened. For example, if the action
opens a Customer Order Lines DataView, this filter could show only unfilled order lines, where
QtyOrdered > QtyShipped.

• Target Form Property: Use this IDO property from the target form (the form that will be
opened by the action) to filter the form that is opened. For example, you could add QtyShipped
< QtyOrdered to the filter when the action opens the Customer Order Lines form.

4 If you selected Literal, specify a comparison value.

5 ClickAdd to translate the information from the fields into filter syntax and show the filter expression
in the editor box.

6 Click OK to save changes.

Infor Mongoose Core Development Guide | 176

DataViews

Notes:

• Click Remove to clear the content in the editor box.
• For complex comparison logic, it may be necessary to manually edit the text in the editor box to add

parentheses around or and and statements, to ensure that the filter is evaluated properly.
• To better understand how filters can be used, look at the vendor level DataViews that are provided

as part of the application.

Infor Mongoose Core Development Guide | 177

DataViews

Chapter 10: DataSearch

About DataSearch
The DataSearch feature allows you to set up and perform data searches that can span across the
entire system. You can, for example, set up DataSearch to search across all your application system
files and return any records that have the string "young" in them. It does not matter whether those
records are found among the customer records, the order and order line records, purchase order
records, or part and version number records.

DataSearch Sources

Before a DataSearch can be performed, you must have at least one DataSearch Source set up. The
DataSearch Source specifies what IDO collection is to be used for the search. You can select which
IDO properties to include in the DataSearch. You can also specify which IDO properties to display as
part of the results of the DataSearch, regardless of whether those properties were included in the
search.

For example, you might want to set up a DataSearch Source to search across customer records to
identify customers who have recently placed orders for bicycle seats with part numbers prefixed by
"CP-".

In this case, you would not want the DataSearch to search through all the IDO properties for the
customer name, address, and contact information, because that would extend the search time. However,
you would want to display that data for all customers who have placed orders for that particular bicycle
seat recently.

You would set up your DataSearch Source to search through orders for which the part number includes
the "CP-" prefix and sort them by date, and then retrieve the customer information for those recent
orders.

Keep in mind that each DataSearch Source can include data from only one IDO collection. This means
that, if you want to search across multiple IDO collections, you will need multiple DataSearch Sources.

DataSearch Source Sets

In cases where you want to include data from several unrelated data sources (IDOs), you can easily
create DataSearch Source Sets. DataSearch Source Sets allow you to group several DataSearch
Sources into a single set which you can then search all at the same time.

Infor Mongoose Core Development Guide | 178

DataSearch

Searching for Application Data with DataSearch
Use the DataSearch form to search for information stored anywhere in the application. The search
results are listed numerically or alphabetically by data source.

For example, you could search for all instances of the text string "Young" across all data sources. The
results list every data source in the system where "Young" is found, for example in customers, orders,
items, vendors, purchase orders, and so on. You can expand the data source to see a list of every
occurrence within that data source.

To search for a value:

1 Open the DataSearch form.

2 Specify the search value, which can include an asterisk (*) as a wildcard.

Note:
• Searches are not case sensitive: The system treats "Test" the same as "test" when querying.
• The wildcard is not generally needed, because all value interpreters except Exact Phrase use

implied wildcards. The Begins with value interpreter, for example, treat search terms like this:
Search Term*

When using Any of these words or All of these words as the value interpreter, you can
specify multiple values to search for, separating them with spaces. Other value interpreters treat
whatever is in the Search field as literal values, including spaces, unless the asterisk is used.

3 Specify how to interpret the value:

Handles the search term(s) like this:This value inter-
preter:

The search retrieves all data with values that have any one of the search
terms, similar to a Boolean OR clause.

Any of these
words

The search retrieves only data that has all of the specified search terms,
similar to a Boolean AND clause.

All of these
words

The search retrieves only records that contain the search term exactly
as specified.

For example, a search for the term "testuser" would retrieve records
containing both "testuser" and "testuser1".

Contains

The search retrieves only records that contain the entire search term,
exactly as specified, but only when the search term is used at the begin-
ning of the field value in which it is found.

For example, a search for the term "test user" would retrieve a record
that contains the value "Test User John", but not for record "John Test
User".

Begins with

Infor Mongoose Core Development Guide | 179

DataSearch

Handles the search term(s) like this:This value inter-
preter:

The search retrieves only records that contain the entire search term,
exactly as specified, but only when the search term is used at the end
of the field value in which it is found.

For example, a search for the term "test user" would retrieve a record
that contains the value "John Test User", but not for record "Test User
John".

Ends with

The search retrieves records that contain only the search term, exactly
as specified.

For example a search for the term "testuser" would retrieve records
containing "testuser" but not "testuser1".

Exact Phrase

Note: Queries that use the value interpreters Any of these words and All of these words
search across all searchable properties. In these cases, each word is treated as a separate term
and searched for individually.

In contrast, the other four value interpreters are variants on phrase-matching, where the whole
search expression is treated as one phrase that must be matched within each searchable property.

4 Optionally, specify which data sources to look in.

By default, all data sources are used.

Note: You can define additional custom DataSearch Sources.

5 To perform the search, click the search (magnifying glass) button.

The results are displayed, initially grouped by data source. The Count field indicates how many
records in the data source include the search term, not how many instances of the search value
were located.

Note: If the search term is found in a property that was both searched and displayed, it is highlighted
with an amber background. If the search term is found in a property that was searched but not
displayed, then nothing in the information that is displayed is highlighted in this way.

6 To expand a data source and view the results in a grid, click the + button.

Once the DataSearch query has been done, you have many of the same layout, display, print, and
export options as for any other type of DataView display.

There are some differences, however. For one thing, display options are fewer and more limited,
basically to expanding or collapsing the results from each DataSearch Source and to rearranging
columns.

Also, you can only have a single layout for each DataSearch Source at each level of scope.

Configuring Data Sources for DataSearch
To configure IDOs (sources) to be searched with DataSearch.

Infor Mongoose Core Development Guide | 180

DataSearch

1 Open the DataSearch Source Setup form and execute Filter In Place.

2 In the Source Name field, specify the name by which to identify the DataSearch source.

3 In the IDO Name field, specify the IDO to use as the source for the data.

Each DataSearch source can use only one IDO.

Note: To search a multi-level structure, such as orders and order lines, you must either set up
multiple DataSearch sources or add the appropriate columns from the second tier (order lines) to
the selected IDO (orders).

4 Optionally, set up a filter to use with the DataSearch source.

To help you set up this filter and to ensure that the filter is formatted properly, you can click Filter,
which launches theDataSearch Source Filter Setup form.

5 Optionally, to provide a name (caption) to override the Source Name and be used for display
purposes in DataSearch forms, specify that caption in the Caption Override field.

If the value you specify is formatted as a translatable string,for example, "sProduct" rather than
"Product," the string is translated. Otherwise, the literal value is displayed. You can use this field to
define a translatable name for the search source. If this field is blank, the Source Name is used as
the caption.

6 Optionally, use the Record Cap field to limit the amount of data that is initially displayed in the
search results. Select one of these options:

• Use System Setting: Use the application's record cap setting.
• Use Specified Max: Specify a maximum value in the Record Cap Value field. This is the default

value.
• Retrieve All: This option can affect system performance if many records are retrieved.

7 Use the Order By group of fields to specify the order in which records are to be searched and
retrieved:

a Specify the property to use for sorting.
b Specify the order (ascending or descending).
c To create the Order By expression, click Add

The expression is displayed in the Order By field.

Note:
• Be aware that this clause does not determine the order in which the retrieved results are

presented in the DataSearch display. This clause determines the order in which the records
are retrieved to begin with. Among other things, this means that, if the number of records
queried is greater than the record cap, an "ascending" query does not retrieve the same set
of records as a "descending" query.

For example, searching on a customer name field using an ascending Order By clause might
return only the records of customers whose names begin with the letters A-G, whereas
searching the same field using a descending Order By clause might return only the records
of customers whose names begin with the letters Z-S.

• Override this Order By clause in the DataSearch results by using a Sort By statement at the
DataView layout level.

8 On the General tab, select the IDO properties to be searched and the IDO properties to be displayed
in the results:

Infor Mongoose Core Development Guide | 181

DataSearch

• To select the same properties in the Properties To Show grid that are selected in the Properties
To Search grid, click Select Search Properties.

• Optionally, you can then select additional information to show in the search results that you do
not want to include in the search. For example, if you set up a search on customer name, you
could include the customer address in the Properties To Show results but not in the Properties
To Search list.

• To include any notes that might be attached to the records being retrieved, select the Search
Notes check box and/or the Show Notes check box.

9 Optionally, on the Search Sets tab, specify any DataSearch Source Sets that you want to include
in the searches.

10 Optionally, on the User Permissions tab, specify the users or groups who can view results from
searches performed using this DataSearch source.

11 To launch the DataSearch form with this source selected, click Launch.

Setting Up a DataSearch Filter
1 To launch the DataSearch Source Filter Setup form, click Filter on the DataSearch Source Setup

form.

Note: You cannot open this form directly.

2 In the Property Name field, specify the IDO property for which you want to set up the filter.

3 Specify the operator to use for the filter. If you select IS NULL or IS NOT NULL, the comparison
field and value need not be specified.

4 Select the comparison type:

• Literal: The property value is compared to the literal value that you specify in the last field on
this row.

• DataSearch Source Property: The property value is compared to another property value
from the DataSearch source.

This can be useful when you want to use a comparison of two properties to control what records
are searched. For example, if you wanted to search only orders that do not have the full number
of items shipped, you could set up the property comparison QtyShipped < QtyOrdered. Or
suppose you wanted to search only orders that were not shipped on time, you could set up the
property comparison ShipDate > DueDate.

5 In the last field on this row, specify the comparison value to be used for the corresponding comparison
type.

6 Optionally, if you use multiple filter clauses, to instruct the system to treat the clause as Boolean
OR comparisons rather than Boolean AND comparisons with the previous clause, select OR Instead
of AND with Previous Clause.

7 To add the filter clause to the list of clauses in the display panel, click Add.

The clause is added to the list, formatted with the proper syntax.

8 Optionally, use Steps 2 through 7 to specify additional filter clauses.

9 Optionally, to remove all filter clauses and start over, click Remove.

Infor Mongoose Core Development Guide | 182

DataSearch

Note: You cannot selectively remove individual filter clauses: If you choose to remove one, you
remove them all.

10 Click OK.

For complex comparison logic, it might be necessary to add parentheses around filter clauses, to make
sure they are evaluated properly. To accomplish this task, manually edit the data in the display list.

Note: To get a better understanding of how filters can be used, look at the vendor level DataSearch
Sources provided as part of the application installation.

About DataSearch Source Sets
A DataSearch Source Set allows you to group multiple DataSearch Sources together, to make it easier
for users to search multiple sources at one time.

For example, you might want to perform a DataSearch that includes records from the Customers,
Customer Orders, Customer Order Lines, and Invoices IDO collections. The easiest way to accomplish
this is to create a DataSearch Source for each IDO, and then group the four sources into a DataSearch
Source Set named "Customer Info."

To create and maintain DataSearch Source Sets, use the DataSearch Source Sets form.

Creating a DataSearch Source Set
To create a DataSearch source set:

1 Open the DataSearch Source Sets form.

2 Click in the last row of the grid view to create a new record.

3 In the Set Name field, specify the name for the source set.

4 Optionally, in the Caption Override field, specify a caption to use when the source set is displayed.

5 In the Source Name grid, select each DataSearch source that you want to include in the set.

6 Save your changes.

The DataSearch source set is now available for selection on the DataSearch form and the DataSearch
Source Setup form.

About DataSearch Layouts
Similar to DataView layouts, DataSearch queries can also have saved layouts. Like DataViews, you
can rearrange columns, choose to hide or show columns, and hide or show extended captions.

Infor Mongoose Core Development Guide | 183

DataSearch

DataSearch layouts also display Source and Count information for each DataSearch Source queried.

However, unlike DataViews, DataSearch queries can have only a single saved layout per DataSearch
Source per scope level. Once saved, that layout is applied to the DataSearch that uses that source
every time a user of that scope performs the query, at least, until you delete it.

DataSearch source layouts do not support summaries, calculated columns, grouping or filtering.

The search results (that is, the display of Source and Count) also have a layout, so you can choose
how to sort the results. This layout is saved with the other layouts for specific sources. The default
vendor layout displays source by count, descending, so the source with the highest count is displayed
first.

Also like predefined DataView layouts, you can view and maintain DataSearch layouts on the DataView
Layouts form.

Infor Mongoose Core Development Guide | 184

DataSearch

Chapter 11: App Builder/App Hub

About App Builder and the App Hub

App Builder

App Builder is a set of online application design tools that are incorporated in and can be run from
within Infor Mongoose. As part of the Infor Technology Suite, it can also run within Infor Ming.le™ and
in the cloud as part of a multi-tenant offering.

App Builder allows you to reuse existing business logic across Infor products and to build composite
applications that use that business logic. This alows you to create custom-built and highly specialized
apps to boost your productivity.

App Builder is designed to build basic apps using an intuitive WYSIWYG user interface. App Builder
offers drag-and-drop of UI components, a data service layer to connect with APIs, and an interaction
wizard to set up how the components of your app interact with each other.

App Builder also includes a responsive-design mechanism that enables you to easily design apps for
optimal operation and display, regardless of what device the end user is using.

Apps can be built, exported, and published from and into different environments. This means you can
develop and test in your test environment, and then later deploy in your production environment. You
can begin the creation of an app with App Builder and then open it in Mongoose for further development.
It also means that you can receive and incorporate apps from other Infor or third-party sources.

Apps built in App Builder are client-side applications that use ION API backend services. Because
many Infor products are already ION API-certified, you can use them when building apps with App
Builder. It is also possible to manually attach your own APIs behind the ION API gateway, and that
way, you can use any REST-based API as part of your apps.

App Hub

The App Hub is a repository where all published and activated App Builder apps are stored. This is the
main user interface for the end user of your apps. The App Hub offers a list of all apps the user has
access to.

Authorized administrators can administer their companys' apps within the App Hub. This includes
control over which apps are available in what versions and who can access them.

Infor Mongoose Core Development Guide | 185

App Builder/App Hub

Mongoose as host for App Builder and App Hub

When used within Infor Mongoose, App Builder and App Hub are both hosted within Mongoose forms
that have the same names. In fact, with the incorporation of App Builder and App Hub into Mongoose,
these apps now operate as FormOnly-mode Mongoose forms. This means that, if you are using Ming.le
to access App Builder and App Hub, you must be a licensed Mongoose user operating in Ming.le. And
if, for some reason, you are attempting to access App Builder or the App Hub from a URL, you are
prompted to sign in to Mongoose before the form opens.

Bi-directional design and storage of App Builder apps

App Builder and Mongoose can be considered bi-directional design tools. By this, we mean that what
you do in one is automatically synchronized with the other.

For example, suppose you create an app in App Builder. When you do, Mongoose automatically creates
and stores the app as a Mongoose form with a special prefix (AB_). This means that you can open the
App Builder app as a form in Mongoose. What's more, you can further develop the app/form in Mongoose
and it automatically becomes part of the original App Builder project.

Note: This does not necessarily imply that all content in one can transfer to the other. There are
limitations, in that the metadata from an App Builder project must have an analogous concept or
component in Mongoose, or Mongoose does not recognize and use it. Similarly, changes made in
Mongoose must align with runtime functionality in App Builder, or they are not recognized or used in
App Builder.

The same generally holds true for App Builder projects that are published in the App Hub. When a
project is published in the App Hub, it is saved and stored as yet another Mongoose form with a different
prefix. This form is separate from the form representing the original App Builder project, so that
development can continue on the original App Builder project without disrupting runtime usage in the
App Hub.

App Builder interactions and Mongoose form event handlers

Interactions created in App Builder projects are created and stored in their corresponding Mongoose
forms as form event handlers. If new event handlers that are applicable in App Builder are then added
to the Mongoose form, they are created in App Builder as interactions.

App Builder data services and Mongoose IDOs/form collections

Data services used in App Builder projects are created in Mongoose as IDOs (Intelligent Data Objects).
Collections created with/for those IDOs are then added to the Mongoose form, and Mongoose
components are bound to those collections.

App Builder permissions, groups, and roles
To use App Builder and the App Hub effectively, you must have the appropriate permissions; be a
member of the appropriate user groups; and have the correct roles assigned. Since App Builder and

Infor Mongoose Core Development Guide | 186

App Builder/App Hub

the App Hub are hosted in Mongoose forms, App Builder users must be assigned to the correct license
modules, as well as being assigned to appropriate user groups within Mongoose.

Licensing for App Builder and the App Hub

To be authorized to access either App Builder or the App Hub, you must be assigned the MGAppBuilder
license module. This license module simply allows you access to those forms.

You must also be assigned the MGUserCreatedForms license module and possibly the MGUserCreated
IDOs license module (depending on how involved you want to get on the IDO side of things). These
license modules allow you access to any forms you might create using App Builder.

These license assignments are in addition to any other Mongoose license modules you might be
assigned.

Group membership for App Builder and the App Hub

Mongoose has three user groups that are predefined for App Builder/App Hub users:

• APPBUILDER-Designer - Members of this group have permission to run and use the App Builder
(form). They can only use it to design and create apps. Once their apps are ready, they can publish
them to the App Hub (from App Builder). They cannot, however, access the App Hub (form) or
activate their apps in the App Hub. That must be done by an Administrator.

• APPBUILDER-User - Members of this group have permission only to access the App Hub (form).
They can only use apps built in App Builder, not create or modify them.

• APPBUILDER-Administrator - Members of this group have permissions to run the App Hub. They
also have access to additional administrative functionality within the App Hub. For example, they
can:
• Restrict access to apps with IFS/Mongoose roles.
• Activate or deactivate apps.
• Upgrade or downgrade apps.
• Export or import apps.
• Delete apps from the App Hub.
• Change or modify names or descriptions of apps.

Users can be assigned to these groups in Mongoose. If Mongoose is running within Ming.le, then the
users, user groups (permissions, roles), and user assignments to groups are all synchronized from
Ming.le.

Launching App Builder and the App Hub
There are three ways to launch App Builder and the App Hub. You can:

• Launch them in Ming.le, by means of linked icons.

Infor Mongoose Core Development Guide | 187

App Builder/App Hub

• Launch them in Mongoose, the same as any other Mongoose form.
• Launch them by means of specially structured URLs.

The URL should follow this pattern:

http(s)://serverName:port/WSWebClient/Default.aspx?page=FormOnly¬itle=
1&Form=AppBuilder

where:

• serverName is the name of your web client server, including the domain, if necessary.
• port is the number of the port to use (optional).

Infor Mongoose Core Development Guide | 188

App Builder/App Hub

Chapter 12: Form Extensions

About extending and replacing forms
Mongoose forms can form an inheritance hierarchy, with child forms extending parent forms in an
arbitrary tree structure. This topic introduces a variation of the extension mechanism called “extend
and replace.” When utilized, a form that “extends and replaces” a parent form is opened when a request
to open the parent form is received, transparent to the user. This is similar to the extend and replace
feature for IDOs.

You can enable this extension mechanism by selecting the Load/replace form with extended form
check box on the User Preferences dialog box.

When the user requests a form, IDO Runtime follows this hierarchy of priority to determine which form
definition must be returned:

1 Form Extensions form entry for Form Name

If the Form Name value is the same as the Replaced By Form value, the extend and replace
feature will not take place. IDO Runtime simply returns the requested form definition.

2 Descendant forms in extension hierarchy with Replace Base Form property set to True
3 Highest descendant level

• If there is no form found at this level, then the requested form definition is returned.
• If there is one form found at this level, then the requested form definition is replaced by that

descendant form definition.
• If there are multiple forms found at this level, then you must use the Form Extensions form to

determine which form definition must be returned.

4 Form Extensions form entry:
a Language ID
b Scope Type

To identify which extended form is used to replace the requested form based on the hierarchical level,
select Help > About This Form then click the Warning Message(s) button.

Using the Form Extensions form
It is possible that more than one extended form can be created to replace a base form or an extended
form on the same system. To manage the details about the extended form that you created and to

Infor Mongoose Core Development Guide | 189

Form Extensions

determine which extended form must be returned when a request to open the base form is received,
use the Form Extensions form.

DescriptionField

The name of the base form

Note: This is the actual form name, and not the form caption.

Form Name

The scope under which the extended form is created:

• Vendor
• Site
• Group
• User

Scope Type

The name of the group or user for which the form is created

Note: This field is populated only if the form is extended at the
Group or User level.

Scope Name

The language and a region or country that is used for translationLanguage ID

The name of the extended formReplaced By Form

Read-Only. The current Access As identifier, which is used in
some forms to identify who created the metadata object.

Default and other possible values include:

• Core - Metadata that Infor has created as part of the basic
system.

• OtherName - Metadata created as part of an application. This
value is variable and is set by the creator of the application.

• Blank - This field should be blank for any Access As-controlled
metadata you have created.

Access As

Infor Mongoose Core Development Guide | 190

Form Extensions

	Contents
	Contacting Infor
	Application Messages
	About Application Message Construction
	Constructing Application Messages
	Setting Application Message Numbers
	Invoking and Concatenating Multiple Application Messages
	About Constraint Exception Messages
	Building Constraint Exception Messages

	IDOs
	Understanding IDOs
	Extend and Replace IDOs
	Working with IDO Projects
	Adding an IDO Project
	Deleting IDO Projects

	Working with IDOs
	The Basics
	Viewing and Understanding an IDO Definition
	About Source Control
	Comparing IDOs during check-in
	About Non-Mongoose Data Used in Mongoose Applications
	Including Data from a Different SQL Database into Your Application
	Including Data from an External Database into a Mongoose Application
	Example: Custom Code to Communicate with an Outrigger Database
	Checking In and Out
	Checking In IDOs
	Checking in Multiple Objects
	Checking Out IDOs

	Adding, Editing and Deleting IDOs
	Adding an IDO
	Setting Advanced IDO Attributes
	Editing IDOs
	Canceling or Undoing Changes to IDOs
	Deleting an IDO
	IDO Deletion Rules

	Exporting and Importing
	Exporting IDOs
	Exporting IDO Extension Class Assemblies
	Exporting Property Classes
	Importing IDOs
	Importing IDO Extension Class Assemblies
	Importing Property Classes

	Working with Tables
	Understanding Tables Used by IDOs
	About IDO Base Tables
	About IDO Secondary Tables
	Adding Base or Secondary Tables to IDOs
	Editing or Removing IDO Tables
	Specifying Join Conditions for Secondary Tables
	Tip: Using Multiple Base Tables

	Working with Methods
	Understanding IDO Methods
	About IDO Extension Classes
	Transactions and IDO Methods
	Adding a Method to an IDO
	Editing Methods
	Deleting a Method or Property from an IDO

	Working with Properties
	Understanding Properties
	Adding a Property to an IDO
	Editing an IDO Property
	Adding or Editing Validators for a Property or Class
	Creating an Inline List
	Creating an IDO Property Validator

	Form Control
	Understanding Form Control
	Form Control Tasks
	Checking Out Objects
	Displaying and Maintaining Checked-Out Objects
	Checking In Objects
	Getting Objects
	Unlocking Objects
	Archiving Objects
	Restoring Objects

	Application Events
	About the Application Event System
	Basic Components of the Application Event System
	Advantages of the Application Event System
	Example: Using the Application Event System
	Using the Application Event System for Document (File) Attachments

	Working with Application Event System
	Handling Application Events
	Controlling the Sequence of Event Handlers and Actions
	Restricting Which Handlers Run
	About Synchronicity
	About Suspension
	About Suspension Stages
	About payload

	About Adjournment and Resumption
	About Event Handler Status
	Ignoring Failures
	Retrying Event Handlers

	About Transactions
	Rolling Back Transactions
	Passing Parameters to an Asynchronous Event
	Calling a Synchronous Event within a Transaction and Handling Failure

	About the Framework Event Service
	Setting Up the Framework Event Service
	Processing Order in the Framework Event Service

	About Event Handler Revisions

	Designing and Using Application Events and Handlers
	About the Access As Identifier
	About Application Events
	Creating Application Events
	Modifying Application Events
	Deleting Application Events

	About Event Triggers
	Creating Event Triggers
	Retesting Triggers

	About Event Handlers
	Creating Event Handlers
	Using the Event Handler Diagram Form

	About Event Actions
	Creating Event Actions
	Showing Event Action Contexts
	Setting Event Action Variables from a BOD Template
	Registering a BOD Template
	Setting up the Extraction XML Collection Action

	About Event Action Parameters
	Nesting Function Calls
	Passing Parameters from Actions
	Setting Variable and Parameter Values
	Setting Event Action Parameters
	Using Expressions in Event Action Parameters
	About Event Action Parameter Functions
	Using Filter Functions

	About Event Variables and Initial States
	About Event Global Constants
	Defining and Using Event Global Constants
	Example: Using an Event Global Constant

	About the Application Event System Design Forms
	Setting up Custom Application Events and Handlers
	Designing a Custom Application Event
	Ordering Event Handlers
	Resequencing Event Handlers
	Ordering Event Actions
	Determining Names of IDO Collections and Properties
	Determining the Name of an IDO Object
	Determining the Name of a Property bound to a Form Component

	Refreshing the Metadata Cache
	Refreshing Cached Metadata by Unloading Global Objects
	Refreshing Cached Metadata by Restarting the IDO Runtime Service
	Refreshing Cached Metadata in the IDO Runtime Development Server

	Tracking Application Event System Status
	About the Application Event System Messages
	Responding to System-Generated Messages
	Setting Variable Access
	Setting Translatable Captions for Variables
	Moving Messages Between Folders
	Sending Email to External Email Inbox for Prompts
	About Prompts and Responses
	Using Custom Entry Forms

	About Voting Rules in Prompts
	About Voting Status
	Dealing with Indeterminate Voting Results
	About Quorums

	Schema (SQL Table and Column) Editing
	Maintaining Tables and Other SQL Schema Elements
	Creating SQL Tables
	Maintaining Columns on SQL Tables
	Specifying Primary Keys and Other Constraints for a Table
	Updating Existing SQL Tables
	Editing SQL User-Defined Data Types
	Executing SQL Statements

	Restricted Tables
	SQL Reserved Words

	User Extended Tables (UETs)
	User Extended Tables Overview
	Associating User Fields with a User Class
	Extending Application Database Tables
	Copying a User Field
	Creating a Relationship Between a Database Table and a User Class
	Creating a User Class
	Creating User Fields
	About User Defined Types
	Defining an Index for a Class
	Drawing UET Fields on Forms
	Impacting the Schema

	Critical Numbers
	About Critical Numbers
	About Critical Number Goals and Alerts
	Defining a Critical Number
	Setting Up Critical Number Parameters
	Setting Up Multiple Results for One Critical Number
	Stored Procedure Critical Number Examples
	Changing Critical Number Display Settings
	About Critical Number Snapshots
	Generating a Critical Number Snapshot

	Critical Number Drilldowns
	About Critical Number Drilldowns
	Setting Up a Critical Number Drilldown
	Setting Up a Stored Procedure Critical Number Drilldown
	Setting Up an IDO Critical Number Drilldown
	Setting Up a Critical Number/Drilldown IDO Filter
	Setting Up an IDO-Based Sub Drilldown
	Setting up a Sub-Drilldown Based on a Stored Procedure

	DataViews
	About DataViews
	Setting up a new DataView
	Displaying a Predefined DataView
	Creating Custom Columns for DataViews
	Specifying Summaries for DataViews
	Displaying DataView results
	About DataView Layouts
	Copying a DataView Layout
	Setting Up Predefined DataViews
	Specifying DataView setup information - General tab
	Setting additional IDO specifications for a DataView
	Specifying DataView setup information - Input Parameters tab
	Specifying DataViews setup information - User Permissions tab
	Specifying DataView setup information - Layouts tab
	Specifying DataView setup information - Report Options tab
	Copying a DataView to Create a New One
	Setting Up a DataView Filter
	Setting Up the Right-Click Actions Menu for DataViews
	Setting Up a DataView Actions Filter

	DataSearch
	About DataSearch
	Searching for Application Data with DataSearch
	Configuring Data Sources for DataSearch
	Setting Up a DataSearch Filter
	About DataSearch Source Sets
	Creating a DataSearch Source Set
	About DataSearch Layouts

	App Builder/App Hub
	About App Builder and the App Hub
	App Builder permissions, groups, and roles
	Launching App Builder and the App Hub

	Form Extensions
	About extending and replacing forms
	Using the Form Extensions form

